ОТ ХИМИИ К ТЕХНОЛОГИИ ШАГ ЗА ШАГОМ

Научная статья УДК 547.979.733:544.42:544.653.2/.3:544.332 DOI: 10.52957/27821900_2022_03_34

ОСОБЕННОСТИ КИНЕТИКИ ДЕСТРУКЦИИ ПРОИЗВОДНЫХ ПОРФИНА И ФТАЛОЦИАНИНА В ОКИСЛИТЕЛЬНЫХ СРЕДАХ¹

Д. Б. Березин^{1,2}, Б. Д. Березин, П. Б. Разговоров²

Дмитрий Борисович Березин, д-р хим. наук профессор; **Борис Дмитриевич Березин**, д-р хим. наук, профессор, **Павел Борисович Разговоров**, д-р техн. наук, профессор

¹Ивановский государственный химико-технологический университет, Иваново, Россия, berezin@isuct.ru ²Ярославский государственный технический университет, Ярославль, Россия, berezin@isuct.ru; razgo-vorovpb@ystu.ru

Ключевые слова:

тетрапиррольные макрогетероциклические соединения; порфирины; фталоцианины; окислительная деструкция, редокс-потенциалы

Аннотация. В работе представлен анализ собственных и литературных данных по вопросам химической, термической и электрохимической устойчивости некоторых ароматических макрогетероциклов (МГЦ) класса порфиринов (H₂P), а также их бензо- и аза-аналогов, установлены электронные и структурные факторы, определяющие скорость разрушения пигментов в присутствии окислителя. Значения окислительно-восстановительных потенциалов МГЦ порфиринового, а также тетрааза, тетрабензо-порфиринового и фталоцианинового типа коррелируют с температурами начала их термоокислительной деструкции и скоростями разложения в окислительных средах. Совместное бензо- и азазамещение в молекулах H₂P приводит к их дестабилизации по отношению к окислителям, при этом ситуация сильно зависит от природы окислителя (H_2O_2 , $S_2O_8^{2-}$ и NO_3^{-}), растворителя (H_2SO_4 , НОАс), а также природы металла в составе молекулы. Существенное влияние на устойчивость к действию окислителей оказывает полимерное состояние или пространственное искажение МГЦ. Показана идентичность механизмов реакции окисления безметальных порфиринов и фталоцианинов перекисью водорода. В обоих случаях реакционным центром МГЦ являются N-H-связи – в мезо-положении (H₂Pc) или в координационной полости H₂N₄ молекулы (H₂P), а пигменты расщепляются до бесцветных продуктов.

Для цитирования:

Березин Д.Б., Березин Б.Д., Разговоров П.Б. Особенности кинетики деструкции производных порфина и фталоцианина в окислительных средах // *От химии к технологии шаг за шагом.* 2022. Т. 3, вып. 3. С. 34-47. URL: http://chemintech.ru/index.php/tor/2022tom3no3

Введение

Устойчивость порфиринов (H₂P) и их комплексов в окислительно-восстановительных средах относится к числу практически важных вопросов. Это обстоятельство связано с тем, что природные порфирины, такие как хлорофилл в структуре зеленых

¹ Памяти моего отца и учителя, талантливого ученого и большого оптимиста, академика Российской академии естественных наук Бориса Дмитриевича Березина (1929-2012)

© Д. Б. Березин, Б. Д. Березин, П. Б. Разговоров, 2022

ОТ ХИМИИ К ТЕХНОЛОГИИ ШАГ ЗА ШАГОМ

листьев, гем в составе гемоглобина, а также цитохромы, каталазы и пероксидазы в условиях их биогенеза и функционирования в живой клетке постоянно находятся в контакте с окислителями (O_2 , H_2O_2 , HO_2^- , NO_2^- , NO_3^- и др.) [1-4]. Синтетические H_2P и их металлокомплексы (MP), например, порфин (I) и его производные (соединения II-IV, X), а также бензо- и аза-аналоги (соединения V-IX), в частности, разнообразные фталоцианины (H_2Pc и MPc), используются как катализаторы реакций окисления органических соединений [5-10], фотосенсибилизаторы технического и биомедицинского назначения, применяются в процессах фотодинамической терапии (ФДТ) онкологических и инфекционных заболеваний [11-21] и также постоянно контактируют с окислителями. В связи с особой важностью вопросы, связанные с устойчивостью H_2P и H_2Pc в окислительных средах, исследовались и обсуждались в ряде монографий, обзорных и оригинальных работ [2-5, 13, 14, 22].

Порфирины и фталоцианины имеют невысокие значения нормальных окислительно-восстановительных потенциалов [2, 23, 24], поэтому в окислительных средах оказываются термодинамически неустойчивыми системами [3-6, 22]. В результате они легко подвергаются химическим, фотохимическим и электрохимическим окислительно-восстановительным превращениям [25-29]. Легкость протекания этих превращений существенным образом зависит от целого ряда факторов, включая особенности структуры самого макрогетероцикла, донорно-акцепторные характеристики функциональных заместителей на периферии его молекулы, природу окислительной среды и т.д. [22, 26, 27]. Рассматриваемые структурно-зависимые процессы лежат в основе световой стадии фотосинтеза, функционирования гемоглобина и ферментов на основе H₂P [1, 4, 25].

В тех случаях, когда в порфиринах отсутствуют функциональные группы, способные к редокс-процессам, скорость окисления их молекул может служить характеристикой их граничных молекулярных орбиталей. Величина энергетического зазора HBMO-B3MO

макроциклов с преимущественно плоской структурой (соединения I-III) и их комплексов с металлами, полученная из ЭСП, хорошо согласуется не только с результатами квантовохимических расчетов, но и с электрохимическими данными, представленными в таблице 1, согласно которым разница между первым потенциалом окисления и восстановления собственно порфиринов обычно составляет (2.25±0.15) V [3].

Соединение	Раство- ритель	Элек- трод сравн.	$E_{1/2}^{\mathrm{Ox}_{1}}, \mathbf{B}$	$E_{1/2}^{\text{Ox}_2}, \mathbf{B}$	$\Delta E^{\text{Ox-Red}}, B$
H ₂ P, I	-	-	0.91	-	-
$H_2(\beta-Et)_8P$, II	DMF	SCE	0.96	1.19	2.30
Zn(β-Et) ₈ P	CH ₂ Cl ₂	SCE	0.63	1.02	2.24
$H_2(\beta-Et)_8Chl$	<i>n</i> -PrCN	-	0.64	1.18	-
$H_2(ms-Ph)_4P$, III	DMF	SCE	1.11	-	2.19
Zn(<i>ms</i> -Ph) ₄ P	DMF	SCE	0.86	1.04	2.21
H ₂ (<i>ms</i> -4-Tol) ₄ Chl	CH_2Cl_2	SCE	0.74	0.98	-
H_2TAP, V	o-DCB	QRE	0.82	-	2.52
		(Fc ⁻ /Fc)			
H ₂ TAChl	o-DCB	QRE	0.64	-	1.77
		(Fc^{-}/Fc)			
H_2Pc , VII	CH_2Cl_2	SCE	0.93	1.14	1.71
H_2 TBP, VI	DMSO	SCE	0.55	-	1.68
ZnTBP	DMF	SCE	0.38	-	1.86
$Zn(\beta-Et)_8(ms-Ph)_4P$	-	-	0.47	-	-
$H(N-Me)(ms-4-Tol)_4P$	CH_2Cl_2	SCE	0.70	1.10	-

Таблица 1. Потенциалы полуволн	(<i>E</i> _{1/2}) окислен	ния порфиринов,	их аза- и бензоанал	югов [24, 29]
	(1/2/	1 I I /		

SCE и QRE (Fc⁻/Fc) – насыщенный каломельный электрод и электрод на основе ферроцена, соответственно.

Большинство H₂P, как правило, подвергаются обратимому двухступенчатому электрохимическому окислению и восстановлению макроциклической системы [3, 23, 24]. Усредненные для преимущественно плоских β- (в частности, β-октаэтилпорфина или этиопорфирина II) и мезо-замещенных порфиринов (например, мезо-тетрафенилпорфина III) потенциалы восстановления ($E_{1/2}$) составляют -(1.3±0.3) В и -(1.7±0.3) В, а окисления - +(0.7±0.3) В и +(1.1±0.3) В (см. табл. 1) [23]. В работе [28] приведена полная электрохимическая характеристика ряда продуктов аза- и бензозамещения порфиринов – лигандов фталоцианинов (H₂Pc, в частности, незамещенного соединения VII) и тетраазапорфиринов (H_2TAP , V) и обнаружено, что все эти соединения способны отдавать по два, а принимать до четырех электронов. Можно говорить о том, что расширение ароматической π-системы МГЦ, например, за счет тетрабензоили тетранафтозамещения в молекулах VI-IX, например, в ряду $H_2TAP(V) - H_2Pc$ (VII) – H₂NPc (VIII, нафталоцианин) приводит к существенному снижению первого потенциала окисления. Такая тенденция к изменению величины *E*_{1/2}^{Ох1}, а также слабый рост $E_{1/2}^{\text{Red}_1}$ наблюдается и в случае тетра-*трет*-бутилзамещенных соединений: $H_2(\beta$ -tert-Bu)₄TAP (1.31; -0.74) – $H_2(\beta$ -tert-Bu)₄Pc (0.95; -0.80) – $H_2(\beta$ -tert-Bu)₄NPc (0.65; -0.89). Постепенное уменьшение потенциалов окисления происходит также в ряду: порфирины $(0.9\div1.1)$ < порфиразины $(0.7\div0.8)$ < тетрабензопорфирины (H₂TBP, 0.5÷0.7) [29] (см. табл. 1). Переход к металлокомплексам, в частности, к комплексным соединениям

H₂P с Zn(II) (см. табл. 1), также заметно снижает потенциалы окисления МГЦ, обычно, на (0.25-0.30) В по первой ступени.

Значения окислительно-восстановительных потенциалов, макрогетероциклов порфиринового, тетрааза-, тетрабензо- и фталоцианинового типа коррелируют с их химической [10, 22, 27, 30-32] и термической [33-35] устойчивостью в окислительных средах (таблица 2). Так, по данным работы [27] константа скорости окисления лиганда этиопорфирина ($H_2(\beta$ -Alk)₈P, II), алкилированного по всем восьми β -положениям молекулы, перекисью бензоила составляет всего ($3.05 \cdot 10^{-4}$) с⁻¹. При этом величина $E_{1/2}$ лиганда H₂P зависит не только от типа ароматической молекулы и природы заместителей, но и от природы координированного металла и экстралигандов в составе комплекса. В работе [30] изучена кинетика окисления феофитина *a* (безметального хлорофилла *a*, соединение **X**) и его комплексов с Cu(II), Co(II), Ni(II) и Fe(II) в ледяной уксусной кислоте (HOAc) в присутствии нитрата калия. Было показано, что реакция окисления протекает мономолекулярно, независимо от концентрации нитрата, а введение металла в состав МГЦ катализирует процесс окисления феофитина.

Таблица 2. Кинети	ка окислительной	деструкции пере	екисью водород	а и нитратом к	калия азотистых м	акро-
гетероциклов [22, 3	0, 36]					

Макрогетероцикл	Растворитель	Концентрация Н ₂ О ₂ , моль•л ⁻¹	Эффективная константа скорости	Порядок реакции
			$K_{3\phi}^{200}, c^{11}0^{0}$	<i>и</i> _{Н2О2}
	17M H ₂ SO ₄	0.12	1.77	1
H_2Pc , VII	17M H ₂ SO ₄	KNO3	оч. быстро	-
		(6.65 [.] 10 ⁻⁴ моль•л ⁻¹)		
ZnPc	17M H ₂ SO ₄	KNO3	0.30	-
		(7.77 ⁻ 10 ⁻³ моль•л ⁻¹)		
H_2 Chl, X	17.3M HOAc	KNO3	0.02	0
		(6.83 ⁻ 10 ⁻³ моль-л ⁻¹)		
Хлорофилл (MgChl)	17.3M HOAc	KNO3	0.02	0
		(6.83 ⁻ 10 ⁻³ моль-л ⁻¹)		
	17M H ₂ SO ₄	0.281	2.90	1
Полимерный		KNO3	оч. быстро	-
фталоцианин*		(4.91 ⁻¹⁰⁻² моль·л ⁻¹)		
$(H_2Pc)_{i=6-12}$		$(NH_4)_2S_2O_8$	4.70	1
		(5.00 ⁻ 10 ⁻² моль-л ⁻¹)		
H ₂ Pc, VII	17M H ₂ SO ₄	$(NH_4)_2S_2O_8$	1.30	1
		(5.00 ⁻¹⁰⁻² моль-л ⁻¹)		
H_2 TPyPA, IX	17M H ₂ SO ₄	0.302	0.17	0.7

* Приведены первые константы скорости (*i* - максимально).

Совместное бензо- и аза-замещение в молекулах порфиринов приводит к их дестабилизации по отношению к окислителям [22, 27]. Вместе с тем, ситуация сильно зависит от природы конкретного окислителя, среды, природы металла в составе MP. Так, локализация реакционного центра окисления и механизмы процесса оказались для фталоцианина VII и его комплексов принципиально различными при проведении реакции в присутствии перекисей в нитробензоле [27] и в серной кислоте [30]. В серной кислоте местом локализации является единственный нацело протонированный *мезо*-атом азота. Более того, в связи с изменением среды в числе активных могут оказываться те MPc, которые были пассивными, и наоборот. В работе [31] изучена окислительная деструкция тетрабензопорфина (H₂TBP, тетрабензоконденсированного порфирина VI), а также его сульфо-, нитро-, амино- и других производных персульфатом калия в уксусной и серной кислотах. Все бензопорфирины оказались менее устойчивыми к окислению по сравнению с фталоцианином, за исключением H₂TBP(SO₃H)₄, который был стабильнее H₂Pc на порядок. Описанные факты согласуются с данными по потенциалам окисления соединений VI и VII (см. табл. 1).

Авторами [32] изучена кинетика окислительной деструкции π -электронодефицитного тетра-2,3-пиридинопорфиразина (H₂TPyPA, **IX**, продукт дополнительного тетраазазамещения) и его комплексов перекисью водорода в 17М H₂SO₄. Оказалось, что порядок реакции по H₂O₂ равен единице, а значение истинной константы (k_v , π ·моль⁻¹·c⁻¹) изменяется от 1.72·10⁻⁴ у H₂TPyPA до 0.126 у PdTPyPA, то есть эти соединения в 10-100 раз стабильнее по сравнению с соответствующими фталоцианинами [22].

В работе [27] показано, что скорости окисления этиопорфирина (**II**, $k = 3.05 \cdot 10^{-4} \text{ c}^{-1}$), тетрабензопорфина (**VI**, $k = 15 \cdot 10^{-2} \text{ c}^{-1}$), тетраазапорфина (**V**, $k = 3.9 \cdot 10^{-6} \text{ c}^{-1}$) и фталоцианина (**VII**, $k = 2.43 \cdot 10^{-2} \text{ c}^{-1}$) перекисью бензоила соотносятся как 1 ÷ 500 ÷ 0.01 ÷ 80 [27]. Таким образом, было показано, что тетрабензозамещение, приводящее к расширению ароматической π -системы H₂P и понижению потенциала окисления макрогетероцикла, резко понижает его резистентность по отношению к окислителям, тогда как электроноакцепторное тетрааза-замещение, наоборот, уменьшает скорости окисления. Комбинированный эффект тетрабензо- и тетразазамещения во фталоцианине приводит к некоторому снижению устойчивости к окислителям по сравнению с H₂P.

Еще одним вариантом проведения окислительных процессов является деструкция МГЦ кислородом при повышенных температурах [29, 33-35]. Склонность рассматриваемых макрогетероциклов к термоокислительную деструкции в присутствии кислорода воздуха возрастает по мере снижения температуры начала процесса убыли массы ($t_{\rm H}$, °C) в рядах лигандов (1) и их металлокомплексов (2) [29, 33].

$$H_{2}Pc (VII, 460) > H_{2}(ms-Ph)_{4}P (III, 407) > H_{2}(\beta-Et_{4}Bu_{4})P (II, 400) > H(N-Me)(ms-(1))$$

$$Ph)_{4}P (240) \sim H_{2}(\beta-Ph)_{8}(ms-Ph)_{4}P (IV, 244)$$
(1)

 $ZnTBP (345) > Zn(ms-Ph)_4P (340) > Zn(\beta-Et_4Bu_4)P (325) > (AcO)Zn(N-Me)(ms-Ph)_4P (230) > Zn(\beta-Ph)_8(ms-Ph)_4P (211)$ (2)

Эти данные позволяют отметить снижение термоустойчивости МГЦ как в ряду лигандов, так и их цинковых комплексов по мере уменьшения ароматичности молекул и роста непланарности при переходе к сильно неплоским многократно замещенным соединениям, например, IV. Высокоароматичный H_2Pc (VII) и металлокомплекс цинка с H_2TBP (VI) в рассматриваемом случае наиболее термоустойчивы. При этом металлокомплексы всегда на 30-80 градусов менее стабильны к термоокислению по сравнению с лигандами, что согласуется с потенциалами их окисления, приведенными в таблице 1.

Проведенный анализ литературных данных позволяет сделать выводы о тенденциях изменения окислительной устойчивости порфиринов и их более ароматичных азаи бензо-аналогов. В случае многочисленных H₂P, обладающей сильно неплоской структурой макроцикла в силу многократного функционального замещения и других причин [37-40], ясность в этом вопросе отсутствует. Поэтому в настоящей работе приводятся и обсуждаются данные по окислению одного из наиболее пространственно искаженных порфиринов – додекафенилпорфина $\{H_2(\beta-Ph)_8(ms-Ph)_4P, IV\}$ и его преимущественно плоского аналога *мезо*-тетрафенилпорфина $\{H_2(ms-Ph)_4P, III\}$ перекисью водорода. Проводится анализ литературных данных по процессам окисления неплоских H_2P , а также возможных механизмов окислительных процессов.

Экспериментальная часть

Макрогетероциклы H₂(*ms*-Ph)₄P (**III**) и H₂(β -Ph)₈(*ms*-Ph)₄P (**IV**) синтезированы по известной методике [41]. Уксусная кислота и перекись водорода, использованные в работе, имели марку «ч». НОАс была подвергнута двукратному вымораживанию с последующим контролем содержания воды по методу Фишера.

Кинетику процесса окисления МГЦ III и IV перекисью водорода в среде ледяной НОАс контролировали спектрофотометрически по убыванию оптической плотности в полосе 724 нм электронного спектра поглощения (ЭСП). В качестве эталона сравнения был выбран *мезо*-тетрафенилпорфин {H₂(*ms*-Ph)₄P, III}.

В координатах lg $\frac{A_o - A_{\infty}}{A_{\tau} - A_{\infty}} - t$, где A_o , A_{τ} и A_{∞} - оптическая плотность в начале, в

ходе и в конце опыта наблюдается характерная зависимость (рис. 1, *слева*), свидетельствующая о первом порядке реакции по порфирину. Эффективные константы скорости реакции окисления (3) представлены в таблице 3.

Рис. 1. Скорость реакции окисления додекафенилпорфина (**IV**, $C H_2 P = 10^{-5} \text{ моль-}\pi^{-1}$) перекисью водорода ($C_{H_2O_2} = 0.353 \text{ моль-}\pi^{-1}$) в растворе ледяной НОАс (*слева*) и окисления полимерного фталоцианина (H_2Pc)_i линейной структуры (i = 12) ($C_{H_2O_2} = 0.281 \text{ м/л}$) в растворе 17М H_2SO_4 (*справа*) при 308 (1) и 298 (2) К

$$-\frac{dC_{H_2P}}{dt} = k_{s\phi} \cdot C_{H_2P} \tag{3}$$

На рис. 1 (*справа*) показана особенность кинетических зависимостей процесса окисления полимеров, то есть влияние полимерного состояния фталоцианина на его устойчивость [36].

Обсуждение результатов

Представляет интерес сравнить полученные и имеющиеся в литературе [2, 22, 27, 29-32] кинетические данные по окислительной деструкции тетрапиррольных и тетраизоиндольных макроциклов в растворах кислот и выяснить электронные и структурные факторы, которые определяют скорость разрушения ароматических макроциклов. Химическое, электрохимическое и фотохимическое окисление металлопорфиринов, металлофталоцианинов и их аналогов сопровождается окислением центрального атома металла, перераспределением спиновой плотности между центральным атомом металла и макроциклическим π -лигандом. В этом случае образуются катион-радикалы порфиринов [3, 23, 25], сильно осложняющие картину окислительных превращений соединений этого типа.

Рассмотрим возможные механизмы окисления на основе безметальных макроциклов (лигандов) на основе H_2P (**I**), H_2Pc (**VII**) и их производных. Первые исследования были проведены на фталоцианине (**VII**) и его многочисленных комплексах (рис. 2) [22, 30]. В таблице 2 приведены кинетические данные по реакциям окисления азотистых макроциклов перекисью водорода, нитратом калия и персульфатом в кислых средах.

Значения стандартных окислительно-восстановительных потенциалов МГЦ VII (см. табл. 1) и его комплексов (от 0.342 В для ZnPc до 0.725 В у PtPc) невелики, поэтому они легко реагируют с сильными окислителями [22]. Многие из них титруются в сернокислых растворах солями Ce(IV). Лиганд VII быстро окисляется нитратом калия (см. табл. 2).

В работах [22, 30, 36] подробно обсуждался механизм реакции окисления фталоцианинов, схема которого схематично и в обобщенном виде может быть представлена как

Рис. 2. Цепной полимерный фталоцианин на основе пиромеллитового тетранитрила

На первой стадии относительно быстро образуется Н-комплекс протонированного фталоцианина с основным центром (В:) окислителя В: - А. Окислителем может быть H₂O₂, ONO₂⁻, ⁻O₃S-O-O-SO₃⁻ и другие частицы. На второй стадии H₂Pc передает протон, а затем электрон на разрыхляющую орбиталь окислителя с образованием комплекса с переносом заряда (КПЗ). Последний на лимитирующей стадии распадается на катион-радикал MPc⁺ и фрагменты молекулы окислителя.

Введение в структуру VII пиридиновых остатков вместо бензольных ядер (H_2 TPyPA, соед. VIII) сильно стабилизирует H_2 Pc к окислителям (см. табл. 2). Причиной стабилизации VIII является снижение энергии ВЗМО макроциклического хромофора C_8N_8 вследствие сильного электроноакцепторного воздействия пиридиновых ядер. Этот электронный эффект затрудняет в процессе (4) образование КПЗ и его распад до катионрадикала H_2 TPyPA⁺ преимущественно за счет роста энергии активации. Кроме этой энергической причины возможна еще кинетическая - связывание окислителя на четырех протонированных пиридиновых атомах азота, которое не может привести к окислению макроцикла. В целом константа скорости окисления VIII снижается по сравнению с VII больше, чем на порядок (см. табл. 2).

У собственно порфиринов из-за отсутствия таких уникальных реакционных центров локализации окислителя, которые есть у H_2Pc на периферии макроцикла (*мезо*атомы азота), можно ожидать сильного понижения окислительной способности ароматического макроцикла. Существенно для порфиринов понижение энергии ВЗМО, которое приводит к росту потенциалов полуволны в процессах электрохимического окисления [23, 24, 29] (см. табл. 1).

Порфирины сильно уступают фталоцианинам в ароматичности [3, 29]. Поэтому они легче вступают в реакции присоединения реагентов по π -связям сопряженной системы (гидрирование, окислительное присоединение и др.) [3, 29]. По этой же причине окисление H₂P может сопровождаться присоединением элементов перекиси водорода (2OH) по различным положениям π -системы [3-6, 23]. Такое присоединение легче происходит в нейтральных растворителях и труднее в кислой среде. Обычно требуется повышенная электронная плотность на реакционных центрах, локализованных в *мезо*-положениях молекулы и по соседству с ними. У порфиразинов (V) и фталоцианинов (VII) мостиковые *мезо*-положения заняты атомами азота. По этой причине даже при высоких концентрациях H₂O₂ присоединение элементов перекиси водорода по π -связям не происходит. У молекул H₂P (соед. I-IV) возможно присоединение H₂O₂, а также активных форм кислорода, например, синглетного ¹O₂ [14, 15, 20, 42-44] по *мезо*- и соседнему с ним положениям. Однако эти вопросы недостаточно исследованы, поскольку реакции окисления органических соединений относятся к числу наиболее сложных, особенно если окисляются полифункциональные молекулы [26].

По сравнению с «классическим» порфирином III, имеющий преимущественно плоский макроцикл додекафенилпорфин IV относится к H₂P с сильно неплоской, пространственно искаженной структурой [29, 37]. Типичным для такого рода МГЦ является существенное батохромное смещение длинноволновой полосы в спектрах поглощения. В отличие от H₂Pc и большинства H₂P додекафенилпорфин {H₂(β -Ph)₈(*ms*-Ph)₄P, **IV**} не растворим ни в водной H₂SO₄, ни в моногидрате. Он слабо растворяется в ледяной уксусной кислоте (λ_1 = 724.0 нм), дихлорметане (λ_1 = 721.0 нм), в HCOOH (λ_1 = 717.5 нм), CF₃COOH (λ_1 = 768 нм), в смеси HOAc-H₂SO₄ (λ_1 = 711.5 нм), в ацетоне (λ_1 = 736.0 нм), в смеси ацетон–NH₃ (λ_1 = 714.5 раствор неустойчив. Для большинства перечисленных выше сред тетрафенилпорпфин {H₂(*ms*-Ph)₄P, **III**} демонстрирует величины λ_1 в области 640–655 нм, то есть на 75-100 нм гипсохромнее по сравнению с искаженным МГЦ **IV**.

Другим характерным признаком неплоских соединений класса H₂P, не содержащих выраженных электронодонорных или акцепторных заместителей, по сравнению с классическими порфиринами [4, 13, 29, 35, 37-41] является понижение потенциалов окисления ($E_{1/2}^{Ox_i}$) по мере усиления непланарности и, практически, неизменность потенциалов восстановления (*E*_{1/2}^{Red}*i*). Это соответствует сближению граничных орбиталей (B3MO-HBMO) и согласуется с батохромным смещением длинноволновой Q_x полосы в ЭСП этих соединений. Такая закономерность наблюдается, например, для додеказамещенных порфиринов, например соединение IV, и их комплексов [29, 37], комплексов Ni(II) с *мезо*-замещенными H_2P [39], у порфиринов и их комплексов {например, Fe(III) и Zn(II) по мере последовательного β,β -гидрирования их π -систем [3, 38] и в меньшей степени у N-замещенных лигандов [29, 40]. Присутствие в молекуле H₂P (MP) заместителей различной электронной природы также приводит к характерным изменениям потенциалов. Если заместители находятся, например, в фенильных кольцах, то изменения потенциалов будут невелики (не более 0.1 В). Если же функциональная группа (как правило, электронный акцептор Cl, Br, NO₂) вступает непосредственно в β - или *мезо*- положение основного макроцикла, то это приводит к сильному положительному сдвигу редокс-потенциалов, который у неплоских H₂P может даже скомпенсировать снижение величины $E_{1/2}^{Ox_i}$, вызванное искажением молекулы.

Подобно другим структурным типам порфиринов, неплоские H_2P и их комплексы могут достаточно легко окисляться кислородом воздуха в присутствии перекиси водорода, солей Tl(III) или Ce(IV), а также подвергаться восстановлению под действием квантов света и, например, аскорбиновой кислоты или гидразина [29, 37]. Комплексы рассматриваемого здесь додекафенилпорфина (IV) с большинством металлов предельно нестабильны в кислых средах и мгновенно диссоциируют до лигандов [29, 37], поэтому анализ их окислительной устойчивости к H_2O_2 и другим окислителям в этих условиях будет исключен из рассмотрения [30, 32, 36].

Из данных таблицы 3 следует, что соединение IV в растворах ледяной уксусной кислоты при высоких концентрациях H_2O_2 (0.35–0.45 M) окисляется со скоростью $k_{3\phi}^{298} = (1.9-6.4)\cdot 10^{-3}c^{-1}$, тогда как *мезо*-тетрафенилпорфин III при более высоких концентрациях H_2O_2 (0.66–0.79 M) со скоростью в несколько раз ниже ($k_{3\phi}^{298} = 1.4-2.1$)· $10^{-3}c^{-1}$. Уже в 1.29· 10^{-5} M растворе МГЦ IV в присутствии 0.449· M H_2O_2 в среде ледяной НОАс реакция окисления при 298 К заканчивается за 10 минут. При окислении в рассматриваемых условиях порфириновые макроциклы расщепляются до бесцветных продуктов.

42

Таблица 3. Константы скорости реакции окисления $H_2(ms-Ph)_4P$ (III) и $H_2(\beta-Ph)_8(ms-Ph)_4P$ (IV) перекисью водорода в растворах HOAc

Соединение					
$H_2(ms-Ph)_4P$ (III, $C_{H_2P} = 2.0 \cdot 10^{-6}$ моль $\cdot \pi^{-1}$)		$H_2(\beta-Ph)_8(ms-Ph)_4P$ (IV, $C_{H_2P} = 6.4 \cdot 10^{-6} \text{ моль} \cdot \pi^{-1}$)			
С _{н202} , моль-л ⁻¹	<i>Т</i> , К	$k_{3\phi} \cdot 10^{-3} c^{-1}$	С _{н2} 02, моль-л-1	<i>Т</i> , К	$k_{\rm sol} \cdot 10^{-3} c^{-1}$
0.663	298	1.4±0.2		296	1.4±0.1
	308	3.1±0.3	0.252	298	1.3±0.2
0.750	298	2.0±0.3	0.555	308	6.4±0.2
0.750	308	3.2±0.2	318	13.8±1.1	
0.794	298	2.1±0.3		296	5.2±0.4
	308	3.5±0.3	0.449	298	6.4±0.3
			7	308	11.3±1.0

Из данных таблицы 3 можно приближенно оценить порядок реакции окисления порфиринов III и IV по $C_{H_2O_2}$. У $H_2(ms-Ph)_4P$ он близок к единице, тогда как у сильно неплоского $H_2(\beta-Ph)_8(ms-Ph)_4P$ составляет значительно меньшую величину. Таким образом, макси-мальное фенилирование молекулы H_2P по периферии в случае соединения IV, приводящее к утяжелению молекулы, к возникновению низкоэнергетических колебательных состояний и к ожидаемой потере термической (см. ряды 1 и 2) или фотохимической [45] стабильности, неожиданно мало дестабилизирует молекулу IV в присутствии H_2O_2 . Между тем стерическое напряжение в макроцикле, создаваемое β - и *мезо*-фенильными кольцами молекулы IV, благоприятствует протеканию реакции окисления. По-видимому, причина заключается в более высокой основности соединения IV [46-48], которое, в отличие от МГЦ III, нацело протонируется в ледяной HOAc, что несколько снижает его способность к окислению.

Близость скоростей окисления перекисью водорода H_2Pc (см. табл. 2) в растворах H_2SO_4 (1.77·10⁻³) с⁻¹ и H_2P (фталоцианин и порфирины с неактивными функциональными группами C_6H_5 и др.) не оставляет сомнения в том, что в обоих случаях реакционный окислительно-восстановительный центр молекул – это их N-H⁺ связи. В первом случае они находятся в *мезо*-положении на периферии МГЦ, во втором – на центральных атомах азота реакционного центра $H_4N_4^{2+}$. У порфиринов на первой стадии, так же как и в случае H_2Pc (4), образуется H-ассоциат $PH_4^{2+...}H_2O_2$, который дает КПЗ на второй стадии:

а затем катион радикал PH₂⁽⁺⁾...OH⁻ и OH⁻, которые в результате дальнейших превращений быстро образуют бесцветные продукты деструкции. Механизмы окислительной деструкции порфиринов с активными функциональными группами (циклопентанонное кольцо и винильная группа хлорофилла и его аналогов (соединение **X**), их лигандов; винильные группы протопорфиринов и гемов), по-видимому, намного сложнее, что следует из данных таблицы 2.

В большинстве работ по изучению процессов окисления анализ продуктов H_2P (MP) не проводился [3, 29]. Исключением является работа [49], в которой приводится пример окисления додеказамещенного аналога соединения IV { $H_2[\beta,\beta-(CH_2)_4](ms-$ Ph)₄P} и его фенил-замещенных производных нитритом натрия в трифторуксусной кислоте, селективными продуктами которого с выходом до 70% являются бензоил-биливердины (см. соединение **XI**).

Таким образом, в настоящей работе представлен анализ собственных и литературных данных по вопросам химической, термической и электрохимической устойчивости ароматических макрогетероциклов класса порфиринов, а также их бензо- и аза-аналогов, установлены электронные и структурные факторы, определяющие скорость разрушения ароматических макроциклов в присутствии окислителя. Показано, в частности, что значения окислительно-восстановительных потенциалов МГЦ порфиринового, а также тетрааза-, тетрабензо-порфиринового и фталоцианинового

типа коррелируют с температурами начала их термоокислительной деструкции и скоростями разложения в окислительных средах. Совместное бензо- и аза-замещение в молекулах H₂P приводит к дестабилизации МГЦ по отношению к окислителям, при этом ситуация сильно зависит от природы окислителя (H₂O₂, S₂O₈²⁻ и NO₃⁻), растворителя-среды (H₂SO₄, AcOH), а также природы металла в составе MP. Существенное влияние оказывает полимерное состояние или пространственное искажение МГЦ. Показана идентичность механизмов реакции окисления безметальных порфиринов и фталоцианинов перекисью водорода. В обоих случаях реакционным центром МГЦ являются N-H⁺-связи – в *мезо*положении (H₂Pc) или в координационной полости H₂N₄ молекулы, а пигменты расщепляются до бесцветных продуктов.

Работа выполнена с использованием ресурсов Центра коллективного пользования научным оборудованием ИГХТУ (при поддержке Минобрнауки России, соглашение № 075-15-2021-671).

Список источников

- 1. Неорганическая биохимия / под ред. Г. Эйхгорна. М.: Мир, 1978. Т. 2. С. 5-113, 339-522.
- 2. Березин Б.Д., Ениколопян Н.С. Металлопорфирины. М.: Наука, 1988. 158 с.
- 3. Mashiko T., Dolphin D., Wilkinson G., Guilard R., McCleverty S.A. Permagon. Porphyrins, hydroporphyrins, azaporphyrins, phthalocyanines, corroles, corrins and related macrocycles. Comprehensive coordination chemistry. Press: Oxford, 1987. Vol. 2. P. 813-898.
- 4. Kadish K.M., Smith K.M., Guilard R. Handbook of porphyrin science. Singapore: World Scient. Publ., 2010-2016. Vol. 1-45.
- 5. Shelton R.A. Metalloporphyrins in catalytic oxidations. Marcel Dekker: New York, 1994. 390 p.
- 6. Тарасевич М.Р., Радюшкина К.А. Катализ и электрокатализ порфиринами. М.: Наука, 1982. 168 с.
- Barona-Castaño J.C., Carmona-Vargas Ch.C., Brocksom T.J., De Oliveira K.T. Porphyrins as catalysts in scalable organic reactions // *Molecules*. 2016. Vol. 21, no. 3. P. 310. DOI: 10.3390/molecules21030310.
- Gonsalves A.M.A.R., Pereira M.M., State of the art in the development of biomimetic oxidation catalysts // *J. of Molec. Catal. A: Chem.* 1996. Vol. 113, no. 1-2. P. 209-221. DOI: 10.1016/S1381-1169(96)00050-7.
- 9. Feng L., Wang K.-Yu., Joseph E., Zhou H.-K., Catalytic porphyrin framework compounds // *Trends in Chem.* 2020. Vol. 2, no. 6. P. 555-568. DOI: 10.1016/j.trechm.2020.01.003.
- Simonova O.R., Zaitseva S.V., Koifman O.I. Oxidation kinetics of Zn-5,15 bis(*ortho*-methoxyphenyl)-2,3,7,8,12,13,17,18-octamethylporphyrin with organic peroxides in *o*-xylene // *Russ. J. Gen. Chem.* 2008. Vol. 78. P. 1260-1267. DOI: 10.1134/S1070363208060285.

- 11. Denis T.G.St., Huang Y.-Y., Hamblin M.R. Cyclic tetrapyrroles in photodynamic therapy: the chemistry of
 - porphyrins and related compounds in medicine. Singapore: World Scient. Publ., 2013. Vol. 27. P. 255-301.
 12. Giancola C., Caterino M., D'Aria F., Kustov A.V., Belykh D.V., Khudyaeva I.S., Starseva O.M., Berezin D.B., Pylina Y.I., Usacheva T., Amato J. Selective binding of a bioactive porphyrin-based photosensitizer to the G-quadruplex from the KRAS oncogene promoter // *Int. J. Biol. Macromol.* 2020. Vol. 145. P. 244-251. DOI: 10.1016/j.ijbiomac.2019.12.152.
 - 13. Каримов Д.Р., Березин Д.Б., Томилова И.К. Корролы как ароматические аналоги корриноидов и витамина В₁₂: синтез, структурные особенности и свойства макрогетероциклов, перспективы химии материалов на их основе // От химии к технологии шаг за шагом. 2020. Т. 1, вып. 1. Р. 9-56. DOI: 10.52957/27821900_2020_01_9. URL: http://chemintech.ru/index.php/tor/2020tom1no1
 - Koifman O.I., Ageeva T.A., Beletskaya I.P. et al. Macroheterocyclic compounds a key building block in new functional materials and molecular devices // *Macroheterocycles*. 2020. Vol. 13, no. 4. P. 311-467. DOI: 10.6060/mhc200814k.
 - Kustov A.V., Morshnev P.K., Kukushkina N.V. et al. Solvation, cancer cell photoinactivation and the interaction of chlorin photosensitizers with a potential passive carrier non-ionic surfactant Tween 80 // Int. J. Mol. Sci. 2022. Vol. 23. P. 5294. DOI: 10.3390/ijms23105294.
 - 16. Kustov A.V., Smirnova N.L., Berezin D.B., Berezin M.B. Blood porphyrins in binary mixtures of N,N-dimethylformamide with 1-octanol and chloroform: the energetic of salvation, solute-cosolvent interactions and model calculations // J. Chem. Thermodyn. 2015. Vol. 83. P. 104-109. DOI: 10.1016/j.jct.2014.12.013.
 - Kustov A.V., Smirnova N.L., Morshnev Ph.K. et al. Transurethral resection of non-muscle invasive bladder tumors combined with fluorescence diagnosis and photodynamic therapy with chlorin e₆-type photosensitizers // J. Clin. Med. 2022. Vol. 11, no.1. P. 233. DOI: 10.3390/jcm11010233.
 - 18. Шухто О.В., Худяева И.С., Белых Д.В., Березин Д.Б. Агрегация гидрофобных хлоринов с фрагментами антимикробных препаратов в водных растворах этанола и Твин 80 // Известия вузов. Химия и хим. технол. 2021. Т. 64, вып. 11. С. 86-96. DOI: 10.6060/ivkkt.20216411.6500.
 - Berezin D.B., Makarov V.V., Znoyko S.A., Mayzlish V.E., Kustov A.V. Aggregation water soluble octaanionic phthalocyanines behavior and their photoinactivation antimicrobial effect in vitro // *Mend. Commun.* 2020. Vol. 30, no. 5. P. 621-623. DOI: 10.1016/j.mencom.2020.09.023.
 - 20. Kustov A.V., Belykh D.V., Startseva O.M., Kruchin S.O., Venediktov E.A., Berezin D.B. New photosensitizers developed on a methylpheophorbide *a* platform for photodynamic therapy: Synthesis, singlet oxygen generation and modeling of passive membrane transport // *Pharmaceutica Analytica Acta*. 2016. Vol. 7, no. 5. P. 480-484. DOI: 10.4172/2153-2435.1000480.
 - Kustov A.V., Smirnova N.L., Berezin D.B., Berezin M.B. Thermodynamics of solution of proto- and mezoporphyrins in N,N-dimethylformamide // J. Chem. Thermodyn. 2015. Vol. 89. P. 123-126. DOI: 10.1016/j.jct.2015.05.016.
 - 22. Berezin B.D. Coordination compounds of porphyrins and phthalocyanines. Wiley: Toronto, 1981. 286 p.
 - 23. Kadish K.M., Smith K.M., Guilard R. Electrochemistry of metalloporphyrins in non-aqueous media. The porphyrin handbook. Acad. Press: New York, 2000. Vol. 8. P. 1-114.
 - 24. Kadish K.M., Royal G., Van Caemelbecke E., Gueletti L. Metalloporphyrins in non-aqueous media: database of redox potentials. The porphyrin handbook. Acad. Press: New York, 2000. Vol. 9. P. 1-219.
 - **25.** Сидоров А.Н., Маслов В.Г. Отрицательные ионы тетрапиррольных соединений // Успехи химии. 1975. Т. 44, вып. 4. С. 577-601.
 - 26. Березин Б.Д., Березин Д.Б. Курс современной органической химии. М.: Высшая школа, 2003. С. 242-248.
 - 27. Вульфсон С.В., Калия О.Л., Лебедев О.Л., Лукьянец Е.А. Окислительно-восстановительные реакции фталоцианинов и родственных соединений. Кинетика и механизм взаимодействия фталоцианинов с перекисью бензоила // *Журн. орган. химии.* 1974. Т. 44, вып. 8. С. 1757-1763.
 - Li R., Zhang X., Zhu P., Ng D. K. P., Kobayashi N., Jiang J. Electron-donating or withdrawing nature of substituents revealed by the electrochemistry of metal-free phthalocyanines // *Inorg. Chem.* 2006. Vol. 45, no. 5. P. 2327-2334. DOI: 10.1021/ic051931k.
 - 29. Березин Д.Б. Макроциклический эффект и структурная химия порфиринов. М.: Красанд, 2010. 424 с.

- 30. Березин Б.Д., Сенникова Г.В. Кинетика окислительной деструкции комплексов фталоцианина и феофитина // *Журн. физ. химии.* 1969. Т. 43, вып. 10. С. 2499-2504.
- 31. Потапова Т.И., Петрова Т.А., Лисова Н.Н., Березин Б.Д. Окислительная деструкция тетрабензопорфирина и его замещенных // Известия вузов. Химия и хим. технол. 1989. Т. 32, вып. 1. С. 42-45.
- Акопов А.С., Быкова В.В., Березин Б.Д. Кинетика окислительной деструкции тетра-2,3-пиридинпорфиразина и его комплексов в реакции с перекисью водорода // Журн. орган. химии. 1983. Т. 19, вып. 3. С. 581-585.
- 33. Антина Е.В., Баранников В.П., Березин М.Б., Вьюгин А.И. Физическая химия растворов макрогетероциклических соединений // Сборник "Проблемы химии растворов и технологии жидкофазных материалов". Иваново: ИХР РАН, 2001. С. 217-248.
- 34. Pop S.-F., Ion R.-M., Corobea M.C., Raditoiu V. Spectral and thermal investigations of porphyrin and phthalocyanine nanomaterials // J. Optoelectr. Adv. Mater. 2011. Vol. 13, no. 7. P. 906-911.
- 35. Березин Д.Б., Каримов Д.Р., Баранников В.П., Семейкин А.С. Исследование термоустойчивости порфиринов с химически активной NH-связью и их ассоциатов с электронодонорными растворителями // Журн. физ. химии. 2011. Т. 85, вып. 12. С. 2325-2330. DOI: 10.1134/S0036024411120041.
- 36. Шорманова Л.П., Березин Б.Д. Окислительная деструкция полимерного фталоцианина и его комплексных соединений // *Высокомолек. соед.* 1970. Т. 12, вып. 3, С. 692-696.
- 37. **Senge M.O.**, Kadish K.M., Smith K.M., Guilard R. Highly substituted porphyrins. The porphyrin handbook. Acad. Press: New York, 2000. Vol. 1. P. 239-347.
- Flitsch W. Hydrogenated porphyrin derivatives: hydroporphyrins // Adv. Heterocycl. Chem. 1988. Vol. 43. P. 73-126. DOI: 10.1016/S0065-2725(08)60253-6.
- 39. Veyrat M., Ramasseul R., Turowska-Tyrk I., Scheidt W.R., Autret M., Kadish K.M., Marchon J.-C. Nickel(II) and Zinc(II) *meso*-tetracyclohexylporphyrins. Structural and electronic effects induced by *meso*-cyclohexyl substitution in metalloporphyrins // *Inorg. Chem.* 1999. Vol. 38, no. 8. P. 1772-1779. DOI: 10.1021/ic981233i.
- 40. Березин Д.Б. N-замещенные порфириноиды: строение, спектроскопия, реакционная способность. LAMBERT Acad. Publ.: Saarbrücken, 2012. 56 с.
- 41. Березин Д.Б., Андрианов В.Г., Семейкин А.С. Проявление структурных особенностей молекул порфиринов в их ЭСП // Опт. спектроскопия. 1996. Т. 80, вып. 4. С. 618-626.
- 42. Кустов А.В., Березин Д.Б., Стрельников А.И., Лапочкина Н.П. Противоопухолевая и антимикробная фотодинамическая терапия: механизмы, мишени, клинико-лабораторные исследования. Практическое руководство / под ред. проф. А.К. Гагуа. М.: Ларго, 2020. 108 с.
- 43. Kustov A.V., Morshnev Ph.K., Kukushkina N.V., Krestyaninov M.A., Smirnova N.L., Berezin D.B., Kokurina G.N., Belykh D.V. The effect of molecular structure of chlorin photosensitizers on photo-bleaching of 1,3-diphenylisobenzofurane the possible evidence of iodine reactive species formation // *Comptes Rendus Chimie*. 2022. Vol. 25. P. 97-102. DOI: 10.5802/crchim.158.
- 44. Венедиктов Е.А., Туликова Е.Ю., Рожкова Е.П., Белых Д.В., Худяева И.С., Березин Д.Б. Синтез, спектрально-люминесцентные и фотохимические свойства трикатионного производного хлорина е₆ с триметиламмонийными группами // *Макрогетероциклы.* 2017. Т. 10, вып. 3. С. 295-300. DOI: 10.6060/mhc170404v.
- 45. Березин Д.Б., Лихонина А.Е. Влияние среды на флуоресцентные характеристики, фото- и термоустойчивость собственно порфиринов различного строения // Журн. общей химии. 2018. Т. 88, вып. 10. С. 1651-1658. DOI: 10.1134/S0044460X18100116.
- Takeda J., Ohya T., Sato M. A ferrochelatase transition-state model. Rapid incorporation of copper (II) into nonplanar dodecaphenylporphyrin // *Inorg. Chem.* 1992. Vol. 31, no. 13. P. 2877-2880. DOI: 10.1021/ic00039a038.
- 47. Sazanovich I.V., Van Hoek A., Panarin A.Yu., Bolotin V.L., Semeykin A.S., Berezin D.B., Chirvony V.S. The photophysical and metal coordination properties of the N-CH₃ substituted porphyrins: H(NCH₃)TPP *vs* H(NCH₃)OEP // *J. Porph. Phthaloc.* 2005. Vol. 9, no. 1. P. 59-67. DOI: 10.1142/S1088424605000113.
- 48. Березин Д.Б. Роль энтропийного фактора в кинетике комплексообразования неплоских порфиринов с локализованным и делокализованным типом NH-связи // От химии к технологии шаг за шагом. 2022.

Т. 3, вып. 1. С. 48-57. DOI: 10.52957/27821900_2022_01_48. URL: http://chemintech.ru/in-dex.php/tor/2022tom3no1

49. Ongayi O., Fronczek F.R., Vicente M.G.H. Benzoylbiliverdins from chemical oxidation of dodeca-substituted porphyrins // *Chem. Comm.* 2003. Vol. 9, no. 18. P. 2298-2299. DOI: 10.1039/B306586C.

Поступила в редакцию 29.08.2022 Одобрена после рецензирования 12.09.2022 Принята к опубликованию 12.09.2022