Omsk, Omsk, Russian Federation
Nowadays, there is a shortage of natural soils of the required quality in many regions of the Russian Federation. Another issue is typical one for the megacities: hundreds of hectares in suburban areas covered by industrial waste dumps, most of which are ash and slag mixtures of coal thermal power plants. The fractionation of the ash and slag mixture during washing in dumps leads to heterogeneity of the grain composition, accounting for which is necessary during the development of man-made soil. To study the heterogeneity in the Section No. 2 of the ash dump TPP-4 in Omsk, we drilled 14 vertical wells and took the samples with disturbed structure from depths of 0.5, 4.5, 8.5 m and 12.5 m. Then, we made the laboratory study of ash and slag materials samples to assess their composition by sieve and areometric methods. According to the study, we define random changing of the man-made soil particle size. Also, the study allows us to identify a statistically significant pattern that can predict the distribution of ash grain size and slag mixtures in the ash dump.
thermal power plants, ash and slag waste and mixtures, man-made soils, grain composition
1. Analysis of indicators of electric energy and power balances of the UES of Russia for the IV quarter of 2018. [online]. Available at: http://www.so-ups.ru/fileadmin/files/company/reports/ups-review/2018/ups_balance_analysis_2018q4_1.pdf (accessed: 12.07.2020) (in Russian).
2. Bartov, G. et al. (2013) Environmental impacts of the Tennessee Valley Authority Kingston coal ashSpill. 1. Source apportionment using mercury stable isotopes, Environ. Sci. Technol., 47(4), pp. 2092–2099. DOI: https://doi.org/10.1021/es303111p.
3. Deonarine, A. et al. (2013) Environmental impacts of the Tennessee Valley Authority Kingston coal ash spill. 2. Effect of coal ash on methylmercury in historically contaminated river sediments, Environ. Sci. Technol., 47(4), pp. 2100–2108. DOI: https://doi.org/10.1021/es303639d.
4. Demir, I., Hughes, R.E. & DeMaris, P.J. (2001) Formation and use of coal combustion residues from three types of power plants burning Illinois coals, Fuel, 80(11), pp. 1659–1673. DOI: https://doi.org/10.1016/S0016-2361(01)00028-X.
5. Martin, J.P. et al. (1990) Properties and Use of Fly Ashes for Embankments, J. Energy Eng. American Society of Civil Engineers, 116(2), pp. 71–86.
6. Ivanov, E.V. (2014) The rationale for the use of pond ash for the construction of the subgrade, taking into account the peculiarities of the water-thermal regime. Omsk: The Siberian State Automobile and Highway University (in Russian).
7. Hadbaatar, A., Mashkin, N.A. & Stenina, N.G. (2016) Study of Ash-Slag Wastes of Electric Power Plants of Mongolia Applied to their Utilization in Road Construction, Procedia Eng., 150, pp. 1558–1562. DOI:https://doi.org/10.1016/j.proeng.2016.07.111.
8. Valeev, D. et al. (2019) Magnetite and carbon extraction from coal fly ash using magnetic separation and flotation methods, Minerals, 9(5), pp. 320. DOI: https://doi.org/10.3390/min9050320.
9. Prashanth, V. & Madhavi, L.G. (2015) Influence of Particle Size on the Friction and Interfacial Shear Strength of Sands of Similar Morphology, Int. J. Geosynth. Gr. Eng., 1, p. 6. DOI:https://doi.org/10.1007/s40891-014-0008-9.
10. Liu, X., Qu, S. & Huang, J. (2019) Relationship between physical properties and particle-size distribution of geomaterials, Constr. Build. Mater., 222, pp. 312–318. DOI: https://doi.org/10.1016/j.conbuildmat.2019.06.127.
11. Zhang, X., Baudet, B.A. & Yao, T. (2020) The influence of particle shape and mineralogy on the particle strength, breakage and compressibility, Int. J. Geo-Engineering, 11(1). DOI:https://doi.org/10.1186/s40703-020-0108-4.
12. Wang, H.-L. et al. (2019) Effect of Grain Size Distribution of Sandy Soil on Shearing Behaviors at Soil–Structure Interface, J. Mater. Civ. Eng., 31(10), pp. 04019238. DOI:https://doi.org/10.1061/(ASCE)MT.1943-5533.0002880.
13. Wen, R. et al. (2018) Grain Size Effect on the Mechanical Behavior of Cohesionless Coarse-Grained Soils with the Discrete Element Method, Adv. Civ. Eng., 2018, pp. 1-6. DOI: https://doi.org/10.1155/2018/4608930.
14. Getahun, E. et al. (2019) Characteristics of grain size distribution and the shear strength analysis of Chenjiaba long runout coseismic landslide, J. Mt. Sci., 16(9), pp. 2110–2125.
15. Gallage, C.P.K. & Uchimura, T. (2010) Effects of dry density and grain size distribution on soil-water characteristic curves of sandy soils, Soils Found., 50(1), pp. 161–172.
16. Zhai, Q. et al. (2020) Estimation of the soil-water characteristic curve from the grain size distribution of coarse-grained soils, Eng. Geol., 267(12), pp. 105502. DOI:https://doi.org/10.1016/j.enggeo.2020.105502.
17. Fredlund, M.D., Fredlund, D.G. & Wilson, G.W. (2000) An equation to represent grain-size distribution, Can. Geotech. J., 37(4), pp. 817–827. DOI: https://doi.org/10.1139/t00-015.
18. Fredlund, M.D., Wilson, G.W. & Fredlund, D.G. (2002) Use of the grain-size distribution for estimation of the soil-water characteristic curve, Can. Geotech. J.. 39(5), pp. 1103–1117. DOI: https://doi.org/10.1139/t02-049.
19. Wang, S.Y., Lu, X.B. & Shi, Z.M. (2005) Effects of grain size distribution and structure on mechanical behavior of silty sands, Yantu Lixue/Rock Soil Mech., 26(7), pp. 1029–1032. DOI:https://doi.org/10.2174/1874835X01003010082.
20. Tiwari, S.K. & Ghiya, A. (2013) Strength Behavior of Compacted Fly Ash, Bottom Ash and their Combinations, Electron. J. Geotech. Eng., 18, pp. 3085-3106.
21. Kim, B., Prezzi, M. & Salgado, R. (2005) Geotechnical properties of fly and bottom ash mixtures for use in highway embankments, J. Geotech. Geoenvironmental Eng., 131(7), pp. 914–924. DOI: https://doi.org/10.1061/(ASCE)1090-0241(2005)131:7(914).
22. Muhunthan, B., Taha, R. & Said, J. (2004) Geotechnical engineering properties of incinerator ash mixes, J. Air Waste Manag. Assoc., 54(8), pp. 985–991. DOI:https://doi.org/10.1080/10473289.2004.10470959.
23. Gimhan, P.G.S., Disanayaka, J.P.B. & Nasvi, M.C.M. (2018) Geotechnical Engineering Properties of Fly Ash and Bottom Ash: Use as Civil Engineering Construction Material, Eng. J. Inst. Eng. Sri Lanka, 51(1), p. 49. DOI: http://doi.org/10.4038/engineer.v51i1.7287.
24. Indraratna, B. et al. (2011) Engineering behaviour of a low carbon, pozzolanic fly ash and its potential as a construction fill, Can. Geotech. J., 28(4), pp. 542–555. DOIhttps://doi.org/10.1139/T91-070.
25. Singh, R.S. & Panda, A.P. (1996) Utilization of fly ash in geotechnical construction, Proc. Indian Geotechnical Conf., 1, pp. 547–550.
26. Pandian, N.S.P. (2005) Fly ash characterization with reference to geotechnical applications, Indian Geotechnical Conference Geotechnics in Infrastructure Development (GEOTIDE), pp. 189–216.
27. Pal, S. & Ghosh, A. (2009) Shear strength behaviour of indian fly ashes, Indian Geotechnical Conference Geotechnics in Infrastructure Development (GEOTIDE), pp. 763–778.
28. Jakka, R.S., Ramana, G. V. & Datta, M. (2010) Shear behaviour of loose and compacted pond ash, Geotech. Geol. Eng., 28(6), pp. 763–778. DOI:https://doi.org/10.1007/s10706-010-9337-1.
29. Mohanty, S. & Patra, N.R. (2015) Geotechnical characterization of Panki and Panipat pond ash in India, Int. J. Geo-Engineering, 6(1), pp. 1–18. DOI:https://doi.org/10.1186/s40703-015-0013-4.
30. Gruchot, A. & Zydroń, T. (2016) Impact of a test method on the undrained shear strength of a chosen fly ash, J. Ecol. Eng., 17(4), pp. 41–49. DOI: https://doi.org/10.12911/22998993/63955.
31. Trivedi, A. & Sud, V.K. (2002) Grain characteristics and engineering properties of coal ash, Granul. Matter., 4(3), pp. 93–101.
32. Kumar, D., Kumar, N. & Gupta, A. (2014) Geotechnical Properties of Fly Ash and Bottom Ash Mixtures in Different Proportions, Int. J. Sci. Res., 3(9), pp. 1487–1494.
33. Lunev, A.A. & Sirotyuk, V.V. (2021) Influence of Granulometric Composition on the Mechanical Properties of Pond Ash, Soil Mech. Found. Eng., 58(4), pp. 314–319.
34. Ogorodnikova, E.N. & Nikolaeva, S.K. (2005) Lithogenetic features of technogenic deposits of ash and slag dumps, Byulleten' Komissii po izucheniyu chetvertichnogo perioda, 66, pp. 65-74 (in Russian).