student
Yaroslavl, Yaroslavl, Russian Federation
employee
Yaroslavl, Yaroslavl, Russian Federation
The paper examines the process of aromatic nucleophilic substitution in 2-chloronitrobenzene and 2,4-dichloro-1,5-dinitrobenzene in a Monowave 50 synthesis reactor. The authors identify accelerated reactions of substrates with azaheterocyclic compounds (pyridine or indole) in hermetically sealed vessels.
2-chloronitrobenzene, 2,4-dichloro-1,5-dinitrobenzene, azaheterocycles, Monowave 50 reactor, aromatic nucleophilic substitution
1. Xu, H., Liu, W.-Q., Fan, L.-L., Chen, Y., Yang, L.-M., Lv, L. & Zheng, Y.-T. (2008) Synthesis and HIV-1 Integrase Inhibition Activity of some N-Arylindoles, Chem. Pharm. Bull., 56(5), pp. 720-722. DOI:https://doi.org/10.1248/cpb.56.720 [online]. Available at: https://www.jstage.jst.go.jp/article/cpb/56/5/56_5_720/_article (accessed 20.08.2023).
2. Desplat, V., Moreau, S., Belisle-Fabre, S., Thiolat, D., Uranga, J., Lucas, R., de Moor, L., Massip, S., Jarry, C., Mossalayi, D.M., Sonnet, P., Deleris, G. & Guillon, J. (2011) Synthesis and evaluation of the antiproliferative activity of novel isoindolo[2,1-a]quinoxaline and indolo[1,2-a]quinoxaline derivatives, J. Enzyme Inhib. Med. Chem., 26(5), pp. 657-667. DOI:https://doi.org/10.3109/14756366.2010.548326 [online]. Available at: https://www.tandfonline.com/doi/full/10.3109/14756366.2010.548326 (accessed 20.09.2023).
3. Xu, H. & Fan, L-L. (2011) Antifungal agents. Part 4: Synthesis and antifungal activities of novel indole[1,2-c]-1,2,4-benzotriazine derivatives against phytopathogenic fungi in vitro, Eur. J. Med. Chem., 46(1), pp. 364-369. DOI:https://doi.org/10.1016/j.ejmech.2010.10.022 [online]. Available at: https://www.sciencedirect.com/science/article/abs/pii/S0223523410007622 (accessed 20.10.2023).
4. Yan, Y., Liu, Z., Zhang, J., Xu, R., Hu, X. & Liu, G. (2011) A reverse method for diversity introduction of benzimidazole to synthesize H+/K+-ATP enzyme inhibitors, Bioorganic Med. Chem. Lett., 21(14), pp. 4189 4192. DOI:https://doi.org/10.1016/j.bmcl.2011.05.080 [online]. Available at: https://www.sciencedirect.com/science/article/pii/S0960894X11007098 (accessed 20.08.2023).
5. Tokay, E., Güngör,T., Hacıoğlu, N., Önder, F.C., Gülhan, Ü.G., Tok, T.T., Çelik, A., Ay, M. & Köçkar, F. (2020) Prodrugs for nitroreductase-based cancer therapy-3: Antitumor activity of the novel dinitroaniline prodrugs/Ssap-NtrB enzyme suicide gene system: Synthesis, in vitro and in silico evaluation in prostate cancer, Eur. J. Med. Chem., 187, pp. 111937-111957. DOI:https://doi.org/10.1016/j.ejmech.2019.111937. Available at: https://www.sciencedirect.com/science/article/pii/S022352341931089X (accessed 23.08.2023).
6. Kumar, K., Awasthi, D., Lee, S.-Y., Cummings, J.E., Knudson, S.E., Slayden, R.A. & Ojima, I. (2013) Benzimidazole-based antibacterial agents against, Francisella tularensis. Bioorganic Med. Chem., 21(11), pp. 3318-3326. DOI:https://doi.org/10.1016/j.bmc.2013.02.059 [online]. Available at: https://www.sciencedirect.com/science/article/pii/S0968089613002605 (accessed 20.10.2023).
7. Kumar, K., Awasthi, D., Lee, S.-Y., Zanardi, I., Ruzsicska, B., Knudson, S., Tonge, P.J., Slayden, R.A. & Ojima, I. (2011) Novel Trisubstituted Benzimidazoles, Targeting Mtb FtsZ, as a New Class of Antitubercular Agents, J. Med. Chem., 54(1), pp. 374-381. DOI:https://doi.org/10.1021/jm1012006 [online]. Available at: https://pubs.acs.org/doi/10.1021/jm1012006 (accessed 20.08.2023).
8. Awasthi, D., Kumar, K., Knudson, S., Slayden, R.A. & Ojima, I. (2013) SAR Studies on TrisubstitutedBenzimidazoles as Inhibitors of Mtb FtsZ for the Development of Novel Antitubercular Agents, J. Med. Chem., 56(23), pp. 9756-9770. DOI:https://doi.org/10.1021/jm401468w [online]. Available at: https://pubs.acs.org/doi/10.1021/jm401468w (accessed 20.07.2023).
9. Gong, Y., Karakaya, S.S., Guo, X., Zheng, P., Gold, B., Ma, Y., Little, D., Roberts, J., Warrier, T., Jiang, X., Pingle, M., Nathan, C.F. & Liu, G. (2014) Benzimidazole-based compounds kill Mycobacterium tuberculosis // Eur. J. Med. Chem., 75, pp. 336-353. DOI:https://doi.org/10.1016/j.ejmech.2014.01.039 [online]. Available at: https://www.sciencedirect.com/science/article/pii/S0223523414000853 (accessed 20.08.2023).
10. Zhong, Q.-F., Liu, R. & Liu, G. (2015) Structure–activity relationship studies on quinoxalin-2(1H)-one derivatives containing thiazol-2-amine against hepatitis C virus leading to the discovery of BH6870, Mol. Divers., 19(4), pp. 829-853. DOI:https://doi.org/10.1007/s11030-015-9610-6 [online]. Available at: https://link.springer.com/article/10.1007/s11030-015-9610-6 (accessed 20.08.2023).
11. Li, M., Sun, H. & Xiong, Q. (2011) Method of treating KCNQ related disorders using organozinc compounds. 2011/0257146 A1 US.
12. Ibata, T., Isogami, Y. & Toyoda, J. (1991) Aromatic Nucleophilic Substitution of Halobenzenes with Amines under High Pressure, Bull. Chem. Soc. Jpn., 64(1), pp. 42-49. DOI:https://doi.org/10.1246/bcsj.64.42 [online]. Available at: https://www.journal.csj.jp/doi/10.1246/bcsj.64.42 (accessed 20.10.2023).
13. Lengyel, L., Gyóllai, V., Nagy, T., Dormán, G., Terleczky, P., Háda, V., Nógrádi, K., Sebők, F., Ürge, L. & Darvas, F. (2011) Stepwise aromatic nucleophilic substitution in continuous flow. Synthesis of an unsymmetrically substituted 3,5-diamino-benzonitrile library, Mol. Divers., 15(3), pp. 631-638. DOI:https://doi.org/10.1007/s11030-010-9300-3 [online]. Available at: https://link.springer.com/article/10.1007/s11030-010-9300-3 (accessed 20.10.2023).
14. Petersen, T.P., Larsen, A.F., Ritzen, A. & Ulven, T. (2013) Continuous Flow Nucleophilic Aromatic Substitution with Dimethylamine Generated in Situ by Decomposition of DMF, J. Org. Chem., 78(8), pp. 4190 4195. DOI:https://doi.org/10.1021/jo400390t [online]. Available at: https://pubs.acs.org/doi/10.1021/jo400390t (accessed 10.10.2023).
15. Kocienski, P. (2017) Conductively Heated Sealed-Vessel Reactor: Synthesis of Olanzapine, Synfacts, 13(03), pp. 0231. DOI:https://doi.org/10.1055/s-0036-1590077 [online]. Available at: https://www.thieme-connect.com/products/ejournals/abstract/10.1055/s-0036-1590077 (accessed 10.09.2023).
16. Anton Paar. (2023) Synthesis reactor: Monowave 50 [online]. Available at: https://www.anton-paar.com/corp-en/products/details/synthesis-reactor-monowave-50/ (accessed 20.10.2023).
17. Abramov, I.G., Baklagin, V.L., Makarova, E.S. & Kleikova, D.E. (2021) Nitrogen-containing heterocyclic O , and S-nucleophiles in reactions with 4-nitrophthalonitrile and 4-bromo-5-nitrophthalonitrile, From Chemistry Towards Technology Step-By-Step, 2(4), pp. 93-99. DOI:https://doi.org/10.52957/27821900_2021_04_93 [online]. Available at: http://chemintech.ru/index.php/tor/2021-2-4 (accessed 20.10.2023).
18. Vitaku, E., Smith, D.T. & Njardarson, J.T. (2014) Analysis of the Structural Diversity, Substitution Patterns, and Frequency of Nitrogen Heterocycles among U.S. FDA Approved Pharmaceuticals, J. Med. Chem., 57(24), pp. 10257-10274. DOI:https://doi.org/10.1021/jm501100b [online]. Available at: https://pubs.acs.org/doi/10.1021/jm501100b (accessed 20.10.2023).
19. Begunov R.S., Sokolov A.A., Filimonov S.I. Synthesis of Quinone Derivatives of Benzannelated Heterocycles with Bridgehead Nitrogen // Rus. J. Org. Chem. 2020. Vol. 56. P. 1383-1391. DOI:https://doi.org/10.1134/S1070428020080084. URL: https://link.springer.com/article/10.1134/S1070428020080084
20. Begunov R.S., ZaitsevaYu.V., Sokolov A.A., Egorov D.O., Filimonov S.I. Synthesis and Antibacterial Activity of 1,2,3,4-Tetrahydro- and Pyrido[1,2-a]Benzimidazoles // Pharm. Chem. J. 2022. Vol. 56, no. 1. P. 22 28. DOI:https://doi.org/10.1007/s11094-022-02596-0. URL: https://link.springer.com/article/10.1007/s11094-022-02596-0
21. Kumar S., Ritika. A brief review of the biological potential of indole derivatives // Future Journal of Pharmaceutical Sciences. 2020. Vol. 6. P. 121-140. DOI:https://doi.org/10.1186/s43094-020-00141-y. URL: https://fjps.springeropen.com/articles/10.1186/s43094-020-00141-y
22. Teraiya N., Agrawal K., Patel T.M., Patel A., Patel S., Shah U., Shah S., Rathod K., Patel K. A Review of the Therapeutic Importance of Indole Scaffold in Drug Discovery // Current Drug Discovery Technologies. 2023. Vol. 20(6). Article ID: e050523216584. DOI:https://doi.org/10.2174/1570163820666230505120553. URL: https://www.eurekaselect.com/article/131536
23. Badigenchala S., Rajechkumar V., Sekar G. A Iodine mediated intramolecular C2-amidative cyclization of indoles: a facile access to indole fused tetracycles // Org. Biomol. Chem. 2016. Vol. 14(7). P. 2297-2305. DOI:https://doi.org/10.1039/C5OB02449H. URL: https://pubs.rsc.org/en/content/articlelanding/2016/ob/c5ob02449h