Ivanovo, Ivanovo, Russian Federation
employee
Ivanovo, Ivanovo, Russian Federation
student
Ivanovo, Ivanovo, Russian Federation
employee
Ivanovo, Ivanovo, Russian Federation
This review summarises the data available in the literature. It also includes the authors' published results of precision densimetric measurements. The research concerns with the physically unusual phenomenon of "thermally activated isobaric partial densification of the structure" (TIPCS) of dissolved water, or its so-called "negative partial molar expandability" (NPEA) in several organic solvents. They contain amphiproton hydroxyl-containing media of three alcohols: methyl alcohol (MA), tertiary butyl alcohol (TBAlcohol), and amyl or pentyl alcohol (TPA), so asprotophilic media of two amines: tert butylamine (TBAmine) and ethylenediamine (EDA). The discussed TIPCS phenomenon, associated with a decrease in the standard (partial at infinite dilution) volume of solvated water with increasing temperature, was discovered about half a century ago in alkanol solutions of H2O and recently - in water-containing media of alkylamines. However, nowadays this extraordinary effect has not yet found its physically based interpretation. It allows ones to predict the possibility of TIPCS occurrence in the binary liquid-phase system specifically selected for the study. Our comprehensive data analysis allowed us to make several inferences regarding the main characteristics of a standard solution of H2O in an organic solvent. They cause extraordinary changes in the volume of the formed solvatocomplex of water under the influence of increasing temperature. Firstly, the energy parameters of the intermolecular interaction (relative affinity) water solvent noticeably dominate over those of the solvent-solvent interaction. Those differences become more evident with increasing temperature. Secondly, a higher rate of thermal expansion of the organic solvent structure in volume (inbulk) is found than influence of temperature on structural packing of the resulting mixed molecular aggregate or water solvates complex. Thirdly, the difference in the parameters of water-solvent and solvent-solvent interactions depends not only on the proton-donor/acceptor properties of the molecules contacting in solution, but also on the configuration of the structural packing of the solvating medium. It determines the nature of steric hindrances to the formation of H-bonds. Therefore, the absolute values of the mentioned parameters of relative affinity at 298.15 K increase in the series: MA << EDA ≈ TBAmine < TPAlcohol < TBAmine. It can indicate a relative strengthening of the specific interaction (mainly through the formation of hydrogen bonds) between the molecules of water and amphiprotonic or protophilic solvent in the above sequence. Indeed, difference in the solvent-solvent and water-solvent hydrogen bonding energies in the discussed liquid media of alkylamines (TBAmine and EDA) and tertiary isomeric alkanols (TBAlcohol and TPA) - with the most evident basicity - turned out to be noticeably larger than in the structural packing of water methanol solution. The ability of the components to specific interactions is quite comparable in those compounds.
dissolved water, solvation, methanol, tert-butanol, tert-pentanol, tert-butylamine, ethylenediamine, standard molar volumes, negative partial molar expandability
1. Ivanov, E.V. & Ivanova, N.G. (2021) State and solvation of water H/D-isotopologues in aprotic dipolar organic media based on results thermochemical investigations, From Chemistry Towards Technology Step-By-Step, 2(1), pp. 126-143. DOI:https://doi.org/10.52957/27821900_2021_01_126. [online]. Available at: http://chemintech.ru/index.php/tor/issue/view/2021-2-1 (accessed 12.12.2023).
2. Ivanov, E.V. (2023) Reply to comments by G.I. Egorov [J. Mol. Liq. 383 (2023) 122128] concerning the terminology to the phenomenon of “partial isobaric compression” being occurred in a number of binary liquid system, J. Mol. Liq. 393. 123499. DOI:https://doi.org/10.1016/j.molliq.2023.123499 (and references therein) (accessed 23.12.2023).
3. Goldblatt, M. (1964) The density of liquid T2O, J. Phys. Chem., 68(1), pp. 147-151. DOI: 10.1021/ j100783a024.
4. Rabinovich, I.B. (1970) Influence of Isotopy on the Physicochemical Properties of Liquids. Moscow: Nauka (in Russian).
5. Kell, G.S. (1977) Effects of isotopic composition, temperature, pressure, and dissolved gases on the density of liquid water, J. Phys. Chem. Ref. Data, 6(4), pp. 1109-1131. DOI:https://doi.org/10.1063/1.555561.
6. Vedamuthu, M., Singh, S. & Robinson, G.W. (1996) Simple relationship between the properties of isotopic water, J. Phys. Chem., 100(9), pp. 3825-3827. DOI:https://doi.org/10.1021/jp953268z.
7. Abrosimov, V.K. & Ivanov, E.V. (2003) Water in nonaqueous solvents: State and solvation. In: A.M. Kutepov (Ed.); Water: Structure, State, and Solvation. Recent Advances (“Problems of Solution Chemistry” series). Moscow: Nauka (in Russian).
8. Vedamuthu, M., Singh, S. & Robinson, G.W. (1994) Properties of liquid water: Origin of the density anomalies, J. Phys. Chem., 98(9), pp. 2222-2230. DOI:https://doi.org/10.1021/j100060a002.
9. Cho, C.H., Singh, S. & Robinson, G.W. (1996) An explanation of the density maximum in water, Phys. Rev. Lett., 76(10), pp. 1651-1654. DOI:https://doi.org/10.1103/physrevlett.76.1651.
10. Holten, V., Bertrand, C.E., Anisimov, M.A. & Sengers, J.V. (2012) Thermodynamics of supercooled water, J. Chem. Phys., 136(9). 094507. DOI:https://doi.org/10.1063/1.3690497.
11. Yasutomi, M. (2015) Thermodynamic mechanism of the density anomaly of liquid water, Front. Phys., 3(8). DOI:https://doi.org/10.3389/fphy.2015.00008.
12. Okajima, H., Ando, M. & Hamaguchi, H.-o. (2018) Formation of “nano-ice” and density maximum anomaly of water, Bull. Chem. Soc. Jpn., 91(6), pp. 991-997. DOI:https://doi.org/10.1246/bcsj.20180052.
13. Simões, M., Yamaguti, K.E., Cobo, R.F., Steudel, A., Amaral, R. & Santos, A.P.R. (2022) An analytical approach to the anomalous density of water, Phys. Fluids, 34(7). 074111. DOI: 10.1063/ 5.0098604.
14. Roy, R., Agrawal, D.K. & McKinstry, H.A. (1989) Very low thermal expansion coefficient materials, Annu. Rev. Maler. Sci., 19(1), pp. 59-81. DOI:https://doi.org/10.1146/annurev.ms.19.080189.000423.
15. Ivanov, E.V., Abrosimov, V.K. & Lebedeva, E.Y. (2003) Phenomenon of negative partial molar expansibility of water in methanol and tert-butanol H/D isotopomers, Dokl. Akad. nauk, 391(1-3), pp. 167-170. DOI:https://doi.org/10.1023/A:1024751301898 (in Russian).
16. Ivanov, E.V. & Lebedeva, E.Yu. (2023) The phenomenon of “partial isobaric compression” of urea as a solute in tertiary butanol: Comparison with a similar effect in the (methanol + urea) system, J. Mol. Liq. 370. 121039. DOI:https://doi.org/10.1016/j.molliq.2022.121039(and references therein).
17. Ivanov, E.V. & Lebedeva, E.Yu. (2024) Temperature-dependent volume properties of water as a solute in tertiary butylamine at ambient pressure, J. Mol. Liq., 394. 123638. DOI:https://doi.org/10.1016/j.molliq.2023.123638.
18. Daunt, J.G. & Smith, R.S. (1954) The problem of liquid helium – Some recent aspects, Rev. Mod. Phys., 26(2), pp. 172-236. DOI:https://doi.org/10.1103/RevModPhys.26.172.
19. Ivanov, E.V. & Abrosimov, V.K. (1995) Volumetric properties of H2O and D2O solutions in methanol H/D isotopomers at different temperatures, Zhurn. neorg. khimii, 40(6), pp. 1047-1051 (in Russian).
20. Ivanov, E.V. & Abrossimov, V.X. (1996) Volumetric properties of mixtures of water and methanol H/D isotopomers between 5 and 45°C, J. Solution Chem., 25(2), pp. 191-201. DOI:https://doi.org/10.1007/BF00972689.
21. Karyakin, A.V. & Kriventsova, G.A. (1973) State of Water in Organic and Inorganic Compounds. Moscow: Nauka (in Russian).
22. Luck, W.A.P. (1987) Water in nonaqueous solvents, Pure Appl. Chem., 59(9), pp. 1215-1228. DOI: 10.1351/ pac198759091215.
23. Abrosimov, V.K. (1989) The solvation and state of water in nonaqueous solutions, Cb. nauch. tr. Termodinamika rastvorov neelektrolitov. Ivanovo: IHNR AN SSSR (in Russian).
24. Belousov, V.P. & Panov, M.Yu. (1983) Thermodynamic Properties of Aqueous Solutions of Organic Substances. L.: Khimiya (in Russian).
25. Dei, L. & Grassi, S. (2006) Peculiar properties of water as solute, J. Phys. Chem. B, 110(24), pp. 12191-12197. DOI:https://doi.org/10.1021/jp060633l.
26. Bonner, O.D. & Choi, Y.S. (1974) Hydrogen-bonding of water in organic solvents I, J. Phys. Chem., 78(17), pp. 1723-1727. DOI:https://doi.org/10.1021/j100610a009.
27. Ivanov, E.V., Abrosimov, V.K. & Lebedeva, E.Yu. (2004) Isotope effect on fractional dilatability of solute water as an indicator of the H-bonding ability of an aprotic dipolar solvent, Zhurnal strukt. khimii, 45(6), pp. 974-980. DOI:https://doi.org/10.1007/s10947-005-0088-4 (in Russian).
28. Hamilton, D. & Stokes, R.H. (1972) Apparent molar volumes of urea in several solvents as functions of temperature and concentration, J. Solution Chem., 1(3), pp. 213-221. DOI:https://doi.org/10.1007/BF00645102.
29. de Visser, C., Perron, G. & Desnoyers, J.E. (1977) The heat capacities, volumes, and expansibilities of tert-butyl alcohol ‒ water mixtures from 6 to 65°C, Can. J. Chem., 55(5), pp. 856-862. DOI:https://doi.org/10.1139/v77-11.
30. Benson, G.C. & Kiyohara, O. (1980) Thermodynamics of aqueous mixtures of nonelectrolytes. I. Excess volumes of water-n-alcohol mixtures at several temperatures, J. Solution Chem., 9(10), pp. 791-804. DOI:https://doi.org/10.1007/BF00646798.
31. Sakurai, M. & Nakagawa, T. (1982) Densities of dilute solutions of water in benzene and in methanol at 278.15, 288.15, 298.15, 308.15, and 318.15 K. Partial molar volumes Vw and values of ∂Vw⁄∂T for water in benzene and in methanol, J. Chem. Thermodyn., 14(3), pp. 269-274. DOI:https://doi.org/10.1016/0021-9614(82)90017-9.
32. Sakurai, M. & Nakagawa, T. (1984) Densities of dilute solutions of water in n-alkanols at 278.15, 288.15, 298.15, 308.15, and 318.15 K. Partial molar volumes of water in n-alkanols, J. Chem. Thermodyn., 16(2), pp. 171-174. DOI:https://doi.org/10.1016/0021-9614(84)90151-4.
33. Sakurai, M. (1978) Partial molar volumes in aqueous mixtures of nonelectrolytes. I. t-Butyl alcohol, Bull. Chem. Soc. Jpn., 60(1), pp. 1-7. DOI:https://doi.org/10.1246/bcsj.60.1.
34. Grasin, V.I. & Abrosimov, V.K. (1991) Thermodynamic properties of water/organic systems with small contents of water 1. Limiting partial molal volumes of D2O and H2O in methanol and 2-propanol at various temperatures. Izv. Akad. nauk SSSR. Ser. khim., 40(3), pp. 263-265. DOI:https://doi.org/10.1007/BF00965411 (in Russian).
35. Grasin, V.I. & Abrosimov, V.K. (1992) Thermodynamic properties of aqueous-organic systems with low water contents. 2. Limiting partial molar volumes of D2O and H2O in tert-butyl alcohol and 1,4-dioxane at 288.15 – 318.15 K, Izv. Akad. nauk SSSR. Ser. khim., 41(3), pp. 448-450. DOI:https://doi.org/10.1007/BF00863060 (in Russian).
36. Kipkemboi, P.K. & Easteal, A.J. (1994) Densities and viscosities of binary aqueous mixtures of nonelectrolytes: tert-Butyl alcohol and tert-butylamine, Can. J. Chem., 72(9), pp. 1937-1945. DOI:https://doi.org/10.1139/v94-247.
37. Grasin, V.I. (2002) Isotope Effects of Solvation and Water State in Vvarious Solvents at 278‒318 K. PhD. Ivanovo: IHRRAN (in Russian).
38. Ivanov, E.B., Abrosimov, V.K. & Lebedeva E.Y. (2004) Structural peculiarities of water solutions in n-alkanols derived from the study of bulk properties at different temperatures. Zhurnalstrukt. khimii, 45(5), pp. 818-824. DOI:https://doi.org/10.1007/S10947-005-0063-0 (in Russian).
39. Egorov, G.I. & Makarov, D.M. (2011) Densities and volume properties of (water + tert-butanol) over the temperature range of (274.15 to 348.15) K at pressure of 0.1 MPa, J. Chem. Thermodyn., 43(3), pp. 430-441. DOI:https://doi.org/10.1016/j.jct.2010.10.018.
40. Egorov, G.I., Makarov, D.M. & Kolker, A.M. (2013) Liquid phase PVTx properties of (water + tert-butanol) binary mixtures at temperatures from 278.15 to 323.15 K and pressures from 0.1 to 100 MPa. II. Molar isothermal compressions, molar isobaric expansions, molar thermal pressure coefficients, and internal pressure, J. Chem. Thermodyn., 61, pp. 169-179. DOI:https://doi.org/10.1016/j.jct.2012.09.008 [online] Available at: https://doi.org/10.1016/j.jct.2012.09.008 (accessed 12.12.2023).
41. Sakurai, M. (1989) Partial molar volumes in aqueous mixtures of nonelectrolytes. III. t-Pentyl alcohol, J. Solution Chem., 18(1), pp. 37-44. DOI:https://doi.org/10.1007/BF00646081.
42. Valtz, A., Coquelet, C., Nikitine, C. & Richon, D. (2006) Volumetric properties of the water + ethylenediamine mixture at atmospheric pressure from 288.15 to 353.15 K, Thermochim. Acta, 443(2), pp. 251-255. DOI:https://doi.org/10.1016/j.tca.2006.01.013.
43. Egorov, G.I., Makarov, D.M. & Kolker, A.M. (2016) Volume properties of liquid mixture of {water (1) + ethylenediamine (2)} over the temperature range from 274.15 to 333.15 K at atmospheric pressure, Thermochim. Acta, 639, pp. 148-159. DOI:https://doi.org/10.1016/j.tca.2016.06.022.
44. Ivanov, E.V. & Abrosimov, V.K. (1997) Volumetric properties of carbamide and deuterocarbamide solutions in methanol H/D-isotopomers at different temperatures, Zhurnal fiz. khimii, 71(1), pp. 64-70 (in Russian).
45. Litman, J.M., Liu, C. & Ren, P. (2022) Atomic polarizabilities for interactive dipole induction models? J. Chem. Inf. Model, 62(1), pp. 79-87. DOI:https://doi.org/10.1021/acs.jcim.1c01307.
46. Kuharski, R.A. & Rossky, P.J. (1984) Molecular dynamics study of solvation in urea ‒ water solution, J. Am. Chem. Soc., 106(20), pp. 5786-5793. DOI:https://doi.org/10.1021/ja00332a005.
47. Vanzi, F., Madan, B. & Sharp, K. (1998) Effect of protein denaturants urea and quanidinium on water structure: a structural and thermodynamic study, J. Am. Chem. Soc., 120(41), pp. 10748-10753. DOI:https://doi.org/10.1021/ja981529n.
48. Tovchigrechko, A., Rodnikova, M. & Barthel, J. (1999) Comparative study of urea and tetramethylurea in water by molecular dynamics simulations, J. Mol. Liq., 79(3), pp. 187-201. DOI:https://doi.org/10.1016/S0167-7322(99)00003-3.
49. Ivanov, E.V. &Abrosimov, V.K. (2001) The most recent studies of structural and volumetric properties of urea and its aqueous solutions. Moscow: Nauka (in Russian).
50. Kustov, A.V. & Smirnova, N.L. (2010) Standard enthalpies and heat capacities of solution of urea and tetramethylurea in water, J. Chem. Eng. Data, 55(9), pp. 3055-3058. DOI:https://doi.org/10.1021/je9010689.
51. Bandyopadhyay, D., Mohan, S., Ghosh, S.K. & Choudhury, N. (2014) Molecular dynamics simulation of aqueous urea solution: is urea a structure breaker? J. Phys. Chem. B, 118(40), pp. 11757-11768. DOI:https://doi.org/10.1021/jp505147u.
52. Chialvo, A.A. & Crisalle, O.D. (2019) Solute-induced effects in solvation thermodynamics: does urea behave as a structure-making or structure-breaking solute? Mol. Phys., 117(23-24), pp. 3484-3492. DOI: 10.1080/ 00268976.2019.1606461.
53. Ivanov, E.V., Kustov, A.V. & Lebedeva, E.Yu. (2019) Solutions of urea and tetramethylurea in formamide and water: A comparative analysis of volume characteristics and solute ‒ solute interaction parameters at temperatures from 288.15 to 328.15 K and ambient pressure, J. Chem. Eng. Data, 64(12), pp. 5886-5899. DOI:https://doi.org/10.1021/acs.jced.9b00794.
54. Kustov, A.V. & Ivanov, E.V. (2021) Solvophobic and solvophilic effects in aqueous and non-aqueous solutions of urea and tetramethylurea. NewYork: Nova Science Publ., Inc. P. 75-130.
55. Egorov, G.I. (2023) Comments on the paper “The phenomenon of “partial isobaric compression” of urea as a solute in tertiary butanol: Comparison with a similar effect in the (methanol + urea) system” by E.V. Ivanov, E.Yu. Lebedeva, J. Mol. Liq., 83. 122128. DOI:https://doi.org/10.1016/j.molliq.2023.122128.
56. Batov, D.V., Ivanov, E.V., Lebedeva, E.Yu., Kustov, A.V., Pakina, A.A. & Ivanova, N.G. (2022) The phenomenon of partial isobaric compressibility (“negative expansibility”) of urea as a solute in tert-butanol and methanol media: A comparative analysis, Proc. XXIII Intern. Conf. on Chemical Thermodynamics in Russia (Kazan 22-27.08 2022). Kazan: Federal University. P. 179.
57. Ben Naim, A. & Marcus, Y. (1984) Solvation thermodynamics of nonionic solutes, J. Chem. Phys., 81(4). pp. 2016-2027. DOI:https://doi.org/10.1063/1.447824.
58. Ben-Naim, A. (1987) Solvation Thermodynamics. New York: Plenum Press.
59. Ben-Naim, A. (2006) Molecular Theory of Solutions. Oxford: Oxford University Press, Inc.
60. Cox, J.D. (1982) Notation for states and processes, significance of the word standard in chemical thermodynamics, and remarks on commonly tabulated forms of thermodynamic functions (IUPAC recommendations), Pure Appl. Chem., 54(9), pp. 1239-1252. DOI:https://doi.org/10.1351/pac198254061239.
61. Ewing, M.B., Lilley, T.H., Olofsson, G.M., Rätzsch, M.T. & Somsen, G. (1994) Standard quantities in chemical thermodynamics: fugacities, activities and equilibrium constants for pure and mixed phases (IUPAC recommendations), Pure Appl. Chem., 66(3), pp. 533-552. DOI:https://doi.org/10.1351/pac199466030533.
62. Vilhelm, E. (2014) Chemical thermodynamics: A journey of many vistas, J. Solution Chem., 43(3), pp. 525-576. DOI:https://doi.org/10.1007/s10953-014-0140-0.
63. Ivanov, E.V. (2012) Thermodynamic interrelation between excess limiting partial molar characteristics of a liquid non-electrolyte, J. Chem. Thermodyn, 47, pp. 437-440. DOI:https://doi.org/10.1016/j.jct.2011.11.018.
64. Burger, K. (1983) Solvation, Ionic, and Complex Formation Reactions in Non-Aqueous Solvents. Moscow: Mir (in Russian).
65. Mamantov, G. & Popov, A.I. (1994) Chemistry of Nonaqueous Solutions: Current Progress. New York: VCH Publishers, Inc. 377 p.
66. Marcus, Y. (1998) The Properties of Solvents. London: John Wiley & Sons. 254 p.
67. Gutmann, V. (1978) The Donor-Acceptor Approach to Molecular Interactions. New York: Plenum Press. 279 p.
68. Riddick, J.A., Bunger, W.B. & Sakano, T.K. (1986) Organic Solvents: Physical Properties and Methods of Purification. New York: Wiley-Interscience. 1344 p.
69. Chickos, J.S., Acree, W.E. & Jr. (2003) Enthalpies of vaporization of organic and organometallic compounds, 1880–2002, J. Phys. Chem. Ref. Data, 32(2). DOI:https://doi.org/10.1063/1.1529214.
70. Ivanov, E.V. & Abrosimov, V.K. (2005) Relationship between the internal pressure and cohesive energy density of a liquid nonelectrolyte. Consequences of ofDack’s concept application, Zhurnal struktur. khimii, 46(5), pp. 856-861. DOI:https://doi.org/10.1007/s10947-006-0210-2 (in Russian).
71. Ohtaki, H. (1992) An attempt to parameterize the structuredness of solvents, J. Solution Chem., 21(1), pp. 39-47. DOI:https://doi.org/10.1007/BF00648979.
72. Rodnikova, M.N. (1993) Features of solvents with a spatial network of H-bonds, Zhurnal fizich. khimii, 67(2), pp. 275-280 (in Russian).
73. Rodnikova, M.N. Val’kovskaya, T.M., Barthel, J. & Kayumova, D.B. (2006) On the elasticity of the H-bond network in the aqueous solutions of diamines, diols, and amino alcohols, Zhurnal fizich. khimii, 80(3), pp. 483-485. DOI:https://doi.org/10.1134/S0036024406030319 (in Russian).
74. Ciach, A. & Perera, A. (2009) A simple lattice model for the microstructure of neat alcohols: Application to liquid methanol, J. Chem. Phys., 131(4). 044505. DOI:https://doi.org/10.1063/1.3184851.
75. Jadżyn, J. & Świergiel, J. (2020) Mesoscopic clustering in butanol isomers, J. Mol. Liq., 314. 113652. DOI:https://doi.org/10.1016/j.molliq.2020.113652.
76. Cerdeiriña, C.A., González-Salgado, D., Romani, L., del Carmen Delgado, M., Torres, L.A. & Costas, M. (2004) Towards an understanding of the heat capacity of fluids: A simple two-state model for molecular association, J. Chem. Phys., 120(14), pp. 6648-6659. DOI:https://doi.org/10.1063/1.1667469.
77. Förner, W. & Badawi, H.M. (2013) Equilibrium structures and vibrational assignments for isoamyl alcohol and tert-amyl alcohol: A density functional study? Z. Naturforsch, 68b(7), pp. 841-851. DOI:https://doi.org/10.5560/ZNB.2013-3003.
78. Chang, Y.-P., Su, T.-M., Li, T.-W. & Chao, I. (1997) Intramolecular hydrogen bonding, gauche interactions, and thermodynamic functions of 1,2-ethanediamine, 1,2-ethanediol, and 2-aminoethanol: A global conformational analysis, J. Phys. Chem. A, 101(34), pp. 6107-6117.DOI:https://doi.org/10.1021/jp971022j.
79. Gubskaya, A.V. & Kusalik, P.G. (2004) Molecular dynamics simulation study of ethylene glycol, ethylenediamine, and 2-aminoethanol. The local structure in pure liquids, J. Phys. Chem. A, 108(35), pp. 7151-7164. DOI:https://doi.org/10.1021/jp0489222.
80. Gubskaya, A.V. & Kusalik, P.G. (2004) Molecular dynamics simulation study of ethylene glycol, ethylenediamine, and 2-aminoethanol. 2. Structure in aqueous solutions, J. Phys. Chem. A, 108(35), pp. 7165-7178. DOI:https://doi.org/10.1021/jp048921+.
81. Esmaielzadeh, S., Zare, Z. & Azimian, L. (2016) Synthesis, physical characterization, antibacterial activity and thermodynamic studies of five coordinate cobalt (III) Schiff base complexes, Bull. Chem. Soc. Ethiop., 30(2), pp. 209-220. DOI:https://doi.org/10.4314/bcse.v30i2.5.
82. Ivanov, E.V. (2012) Volumetric properties of dilute solutions of water in ethanol and water-d2 in ethanol-d1 between T = (278.15 and 318.15) K, J. Chem. Thermodyn., 47, pp. 162-170. DOI:https://doi.org/10.1016/j.jct.2011.10.009.
83. Abrosimov, V.K. & Ivanov, E.V. (2011) The densimetry of solutions. In: Theoretical and Experimental Methods of Solution Chemistry («Problems of Solution Chemistry” series). Moscow: Prospekt (in Russian).
84. Ivanov, E.V. (2020) Note on “The interpretation of the parameters of the equation used for the extrapolation of apparent molar volumes of the non-electrolyte (solutes) to the infinite dilution” by J. Wawer and J. Krakowiak, J. Mol. Liq., 314. 113637.
85. Würzburger, S., Sartorio, R., Guarino, G. & Nisi, M. (1988) Volumetric properties of aqueous solutions of polyols between 0.5 and 25 °C. J. Chem. Soc. Faraday Trans. 1, 84(7), pp. 2279-2287. DOI: 10.1039/ F19888402279.
86. Ivanov, E.V. (2021) The solvomolality concept as a step in developing the ideas of structure-thermodynamic characteristics of solutions: dedicated to the anniversaries of the birth of G.A. Krestov and the foundation of the institute of solution chemistry of RAS being named after him, Izv.vuzov. Khimiya i khim. tekhnologiya, 64(10), pp. 6-15. DOI:https://doi.org/10.6060/ivkkt.20216410.6461 (in Russian).
87. Franks, F.J. (1977) Solute interactions in dilute aqueous solutions. Part 3. Volume changes associated with the hydrophobic interaction, J. Chem. Soc. Faraday Trans. 1, 73(5), pp. 830-832. DOI: 10.1039/ F19777300830.
88. Lepori, L. & Gianni, P. (2000) Partial molar volumes of ionic and nonionic organic solvents in water: a simple additivity scheme based on the intrinsic volume approach, J. Solution Chem., 29(5), pp. 405-447. DOI: 10.1023/ A:1005150616038.
89. de Visser, C., Heuvelsland, W.J.M., Dunn, L.A. & Somsen, G. (1978) Some properties of binary aqueous liquid mixtures: Apparent molar volumes and heat capacities at 298.15 K over the whole mole fraction range, J. Chem. Soc. Faraday Trans. 1, 74(11), pp. 1159-1169. DOI:https://doi.org/10.1039/F19787401159.