student
Yaroslavl, Yaroslavl, Russian Federation
graduate student
Yaroslavl, Yaroslavl, Russian Federation
employee
Yaroslavl, Yaroslavl, Russian Federation
Based on the oxidative coupling reaction, methods for the synthesis of substituted 2,2'- and 4,4'-biphenyldiols have been developed. These biphenyldiols were not described in the literature. The article presents the potential applications and limitations of the method using potassium ferricyanide and iron (III) chloride hexahydrate.
2.4- and 2.6-disubstituted phenols, potassium ferricyanide, iron(III) chloride hexahydrate, bisphenols, substituted 2.2'- and 4.4'-biphenyldiols
1. Noszczyńska, M. & Piotrowska-Seget, Z. (2018) Bisphenols: Application, occurrence, safety, and biodegradation mediated by bacterial communities in wastewater treatment plants and rivers, Chemosphere, 201, pp. 214-223. DOI:https://doi.org/10.1016/j.chemosphere.2018.02.179.
2. Abramov, I.G., Baklagin, V.L., Bukhalin, V.V., Maizlish, V.E. & Rassolova, A.E. (2022). Synthesis of substituted aryloxyphthalonitriles based on 4-chlorophthalonitrile and 4,5-dichlorophthalonitrile, From Chemistry Towards Technology Step-By-Step, 3(4), pp. 102-109. DOI:https://doi.org/10.52957/27821900_2022_04_102 [online]. Available at: http://chemintech.ru/index.php/tor/2022-3-4 (accessed 10.09.2023).
3. Neelamegam, R., Palatnik, M.T., Fraser-Rini, J., Slifstein, M., Abi-Dargham, A. & Easwaramoorthy, B. (2010) Dimerization of phenols and naphthols using an aqueous sodium hypochlorite, Tetrahedron Lett., 51(18), pp. 2497-2499. DOI:https://doi.org/10.1016/j.tetlet.2010.02.173.
4. Armstrong, D.R., Cameron, C., Nonhebel, D.C. & Perkins, P.G. (1983) Oxidative coupling of phenols. Part 10. The role of steric effects in the formation of C–O coupled products, J. Chem. Soc., Perkin Trans. 2, (5), pp. 587-589. DOI:https://doi.org/10.1039/P29830000587.
5. Yusnidar, Y., Budi, A. & Cahyana, H. (2015) Syntheses via phenolic oxidative coupling using crude peroxidase from Brassica juncea (L) Czern leaves and antioxidant evaluation of dimeric thymol, Mediterr. J. Chem., 3(6), pp. 1100-1110. DOI:https://doi.org/10.13171/mjc.3.6.2015.01.06.12.36.yusuf.
6. Jiang, Q., Sheng, W., Tian, M., Tang, J. & Guo, C. (2013) Cobalt(II)–Porphyrin-Catalyzed Aerobic Oxidation: Oxidative Coupling of Phenols, Eur. J. Org. Chem., 2013, pp. 1861-1866. DOI:https://doi.org/10.1002/ejoc.201201595.
7. Dekhici, M., Villemin, D., Bar, N. & Cheikh, N. (2021) Aerobic and Biomimetic Activation of C-H Bonds of Phenols Catalysed by Copper-Amine Complexes, The 25th International Electronic Conference on Synthetic Organic Chemistry, 15–30 November 2021. DOI:https://doi.org/10.3390/ecsoc-25-11710 [online]. Available at: https://ecsoc-25.sciforum.net/
8. Haemin, G., Daewoo, L., Kwon-Young, Ch., Han-Na, K., Hoon, R., Dai-Soo, L. & Byung-Gee, K. (2017) Development of High Performance Polyurethane Elastomers Using Vanillin-Based Green Polyol Chain Extender Originating from Lignocellulosic Biomass, ACS Sustain. Chem. Eng., 5(6), pp. 4582-4588. DOI:https://doi.org/10.1021/acssuschemeng.6b02960.
9. Grzybowski, M., Skonieczny, K., Butenschön, H. & Gryko, D.T. (2013) Comparison of Oxidative Aromatic Coupling and the Scholl Reaction, Angew. Chem. Int. Ed., 52, pp. 9900-9930. DOI:https://doi.org/10.1002/anie.201210238.
10. De Farias Dias, A. (1988) An improved high yield synthesis of dehydrodieugenol, Phytochem., 27(9), pp. 3008 3009. DOI:https://doi.org/10.1016/0031-9422(88)80715-5.
11. Anita, Y., Sundowo, A., Dewi, P.N.L., Filailla, E., Mulyani, H., Risdian, Ch., Banjarnahor, S., Hanafi, M. & Istyastono, E.P. (2015) Biotransformation of Eugenol to Dehydroeugenol Catalyzed by Brassica juncea Peroxidase and its Cytotoxicity Activities, Procedia Chem., 16, pp. 265-271. DOI:https://doi.org/10.1016/j.proche.2015.12.049.
12. Mihailović, M.L. & Čeković, Ž. (1971) Oxidation and reduction of phenols, The Chemistry of The Hydroxyl Group, Part 1, Chap. 10, pp. 505-592. DOI:https://doi.org/10.1002/9780470771259.ch10.
13. Kalyani, G.A., Jamunarani, R. & Pushparaj, M.F. (2015) Kinetics and Mechanistic Study of Oxidation of Ethyl Vanillin by Alkaline Hexacyanoferrate(III), Asian J. Chem., 27(7), pp. 2583–2586. DOI:https://doi.org/10.14233/ajchem.2015.18366.
14. Schmalzl, K.J., Forsyth, C.M. & Evans, P.D. (2003) Evidence for the formation of chromium (III) diphenoquinone complexes during oxidation of guaiacol and 2,6-dimethoxyphenol with chromic acid, Polym. Degrad. Stab., 82(3), pp. 399-407. DOI:https://doi.org/10.1016/S0141-3910(03)00192-7.
15. Haynes, C.G., Turner, A.H. & Waters, W.A. (1956) The oxidation of monohydric phenols by alkaline ferricyanide, J. Chem. Soc., pp. 2823-2831. DOI:https://doi.org/10.1039/JR9560002823.
16. Sarkar, S., Ghosh, M.K. & Kalek, M. (2020) Synthesis of Pummerer’s ketone and its analogs by iodosobenzene-promoted oxidative phenolic coupling, Tetrahedron Lett., 61(43), 152459. DOI:https://doi.org/10.1016/j.tetlet.2020.152459.
17. Kan, Zh., Xinye, Y., Yuting, W. & Yuqi, L. (2019) Thermally activated structural changes of a norbornene-benzoxazine-phthalonitrile thermosetting system: simple synthesis, self-catalyzed polymerization and outstanding flame retardancy, ACS Appl. Polym. Mater., 1(10), pp. 2713–2722. DOI:https://doi.org/10.1021/acsapm.9b00668.