Yaroslavl, Yaroslavl, Russian Federation
Yaroslavl, Yaroslavl, Russian Federation
Yaroslavl, Yaroslavl, Russian Federation
Provedeno kvantovo-himicheskoe modelirovanie metodom REVPBE0 3,4-digidro-2H-tiopiran-1,1-dioksida,3,4,6-trifenil-3,4-digidro-2H-tiopiran-1,1-dioksida i ih anionov. Rasschitany svobodnye energii Gibbsa dlya reakcii ih vzaimodeystviya s gidroksid anionom v kachestve osnovaniya. Ustanovleno razlichie v kislotnyh svoystvah protonov 2H-tiopiranovyh kolec i polozheniya reakcionnyh centrov v posleduyuschih reakciyah s uchastiem obrazuyuschihsya anionov.
3,4-digidro-2H-tiopiran-1,1-dioksidy, kislotnost', kvantovo himicheskoe modelirovanie, metod REVPBE0
1. Merkulova E.A., Kolobov A.V., Ovchinnikov K.L. A Convenient Synthesis of 3,4-Dihydro-2H-thiopyran-2,3-dicarboxylic Acid Derivatives // Rus. Chem. Bull., Int. Ed. 2019. Vol. 68, no. 3. P. 606-609. DOI:https://doi.org/10.1007/s11172-019-2462-y.
2. Merkulova E.A., Kolobov A.V, Ovchinnikov K.L., Khrustalev V.N., Nenajdenko V.G. Unsaturated Carboxylic Acids in the One-pot Synthesis of Novel Derivatives of 3,4-Dihydro-2H-thiopyran // Chemistry of Heterocyclic Compounds. 2021. Vol. 57, no. 3. R. 245–252. DOI:https://doi.org/10.1007/s10593-021-02900-y.
3. Chabanenko R.M., MykolenkoS.Yu., Kozirev E.K., Palchykov V.A. Multigram Scale Synthesis of 3,4- and 3,6-Dihydro-2H-thiopyran 1,1-Dioxides and Features of their NMR Spectral Behavior // Synthetic Communications. 2018. Vol. 48, no. 17. P. 2198-2205. DOI:https://doi.org/10.1080/00397911.2018.1486427.
4. OvchinnikovK.L., Starostin M.V., Larionov N.N. Quantum-chemical Study of the Regioselectivity of the Diels-Alder Heteroreaction of α,β-Unsaturated Thiocarbonyl Compounds with Unsymmetrical Dienophiles // From Chemistry Towards Technology Step-By-Step. 2021. Vol. 2, no. 3. P. 110-114. DOI:https://doi.org/10.52957/27821900_2021_03_110. URL: http://chemintech.ru/index.php/tor/2021-2-2
5. 5. Ovchinnikov K.L., Karpov I.D., Starostin M.V., Kolobov A.V. Comparative Quantum-Chemical Analysis of the Reactivity of 1-Phenilbut-2-en-3-tyon and 2-(N-pirrolidinil)pent-2-en-4-tyon as Heterodiens in the Diels-Alder Reaction // From Chemistry Towards Technology Step-By-Step. 2021. Vol. 2, no. 4. P. 77-80. DOI:https://doi.org/10.52957/27821900_2021_04_77. URL: http://chemintech.ru/index.php/tor/2021-2-3
6. Neese F. The ORCA program system // Wiley Interdiscip. Rev. Comput. Mol. Sci. 2012. Vol. 2, no. 1. P. 73 78. DOI:https://doi.org/10.1002/wcms.81.
7. Neese F., Wennmohs F., Becker U., Riplinger C. The ORCA quantum chemistry program package // J. Chem. Phys. 2020. Vol. 152, no. 22. 224108. DOI:https://doi.org/10.1063/5.0004608.
8. Neese F. Software update: The ORCA program system - Version 5.0 // Wiley Interdiscip. Rev. Comput. Mol. Sci. 2022. e1606. DOI:https://doi.org/10.1002/wcms.1606.
9. Perdew J.P., Burke K., Ernzerhof M. Generalized Gradient Approximation Made Simple // Phys. Rev. Lett. 1996. Vol. 77, no. 18. P. 3865-3868. DOI:https://doi.org/10.1103/PhysRevLett.77.3865.
10. Ernzerhof M., Scuseria G.E. Assessment of the Perdew-Burke-Ernzerhof exchange-correlation functional // J. Chem. Phys. 1999. Vol. 110, no. 11. P. 5029-5036. DOI:https://doi.org/10.1063/1.478401.
11. Caldeweyher E., Ehlert S., Hansen A., Neugebauer H., Spicher S., Bannwarth C., Grimme S. A generally ap-plicable atomic-charge dependent London dispersion correction // J. Chem. Phys. 2019. Vol. 150, no. 15. 154122. DOI:https://doi.org/10.1063/1.5090222.
12. Caldeweyher E., Mewes J.-M., Ehlert S., Grimme S. Extension and evaluation of the D4 London-dispersion model for periodic systems // Phys. Chem. Chem. Phys. 2020. Vol. 22, no. 16. P. 8499-8512. DOI:https://doi.org/10.1039/D0CP00502A.
13. Weigend F., Ahlrichs R. Balanced basis sets of split valence, triple zeta valence and quadruple zeta valence quality for H to Rn: Design and assessment of accuracy // Phys. Chem. Chem. Phys. 2005. Vol. 7, no. 18. P. 3297 3305. DOI:https://doi.org/10.1039/B508541A.
14. Weigend F. Accurate Coulomb-fitting basis sets for H to Rn // Phys. Chem. Chem. Phys. 2006. Vol. 8, no. 9. P. 1057-1065. DOI:https://doi.org/10.1039/B515623H.
15. Rappoport D., Furche F.Property-optimized Gaussian basis sets for molecular response calculations // J. Chem. Phys. 2010. Vol. 133, no. 13. 134105. DOI:https://doi.org/10.1063/1.3484283.
16. Kossmann S., Neese F. Efficient Structure Optimization with Second-Order Many-Body Perturbation Theory: The RIJCOSX-MP2 Method // J. Chem Theory Comput. 2010. Vol. 6, no. 8. P. 2325-2338. DOI:https://doi.org/10.1021/ct100199k.
17. Hellweg A., Hattig C., Hofener S., Klopper W.Optimized accurate auxiliary basis sets for RI-MP2 and RI CC2 calculations for the atoms Rb to Rn // Theor. Chem. Acc. 2007. Vol. 117, no. 4. P. 587-597. DOI:https://doi.org/10.1007/s00214-007-0250-5.
18. Hellweg A., Rappoport D. Development of new auxiliary basis functions of the Karlsruhe segmented con-tracted basis sets including diffuse basis functions (def2-SVPD, def2-TZVPPD, and def2-QVPPD) for RI-MP2 and RI-CC calculations // Phys. Chem. Chem. Phys. 2015. Vol. 17, no. 2. P.1010-1017. DOI:https://doi.org/10.1039/C4CP04286G.
19. Barone V., Cossi M. Quantum Calculation of Molecular Energies and Energy Gradients in Solution by a Conductor Solvent Model // J. Phys. Chem. A. 1998. Vol. 102, no. 11.P. 1995-2001. DOI:https://doi.org/10.1021/jp9716997.