ASSESSMENT OF POLYFUNCTIONAL MACROCYCLIC COMPOUNDS IN SOLUTION BY CRYOSCOPIC METHOD
Abstract and keywords
Abstract (English):
The article considers the synthesis of meso-tetrakis(1'-methyl-pyrid-4-yl)porphyrin tetratosylate and meso-tetrakis(1'-methyl-carboxymethylpyrid-4-yl)porphyrin tetrabromide. The authors qualified the porphyrin ligands in terms of the electron and 1H NMR spectroscopy. The research determines the decrease of freezing point (ΔTfr) of aqueous solutions of porphyrins, as well as a model N-methyl-pyridinium salt (1 methyl-pyridinium iodide). We used the obtained experimental values of ΔT3 to determine the isotonic coefficient. The obtained results indicate the compounds are almost completely dissociated in the indicated concentration range in dilute solutions.

Keywords:
Water-soluble tetrapyridylporphyrins, water, isotonic coefficient, cryoscopy
Text
Text (PDF): Read Download
References

1. Berezin, B.D. (1985) Porphyrins: spectroscopy, electrochemistry, application. M.: Nauka (in Russian).

2. Abramov, I.G., Baklagin, V.L., Makarova, E.S. & Kleikova, D.E. (2021) Nitrogen-containing heterocyclic O , and s-nucleophiles in reactions with 4-nitrophthalonitrile and 4-bromo-5-nitrophthalonitrile, From Chemistry Towards Technology Step-By-Step, 2(4), pp. 43-49 [online]. Available at: http://chemintech.ru/index.php/tor/2021-2-4 (in Russian).

3. Koifman, O.I. (2020) Macroheterocyclic compounds – a key building block in new functional materials and molecular devices, Macroheterocycles, (13), pp. 311-467. DOI:https://doi.org/10.6060/mhc200814k.

4. Masa, J., Ozoemena, K., Schuhmann, W. & Zagal, J.H. (2012) Oxygen reduction reaction using N4 metallomacrocyclic catalysts: fundamentals on rational catalyst design, J. Porphyrins and Phtalocyanines, (16), pp. 761-784. DOI:https://doi.org/10.1142/S1088424612300091.

5. Kuzmin, S.M., Chulovskaya, S.A., Parfenyuk, V.I. & Koifman, O.I. (2020) Poly-5,10,15,20-tetrakis(4-hydroxyphenyl)porphyrin as a material for photovoltaic devices, Mendeleev Communications, 30(6), pp. 777 780. DOI:https://doi.org/10.1016/j.mencom.2020.11.030.

6. Zamadar, M., Orr, Ch. & Uherek, M. (2016) Water Soluble Cationic Porphyrin Sensor for Detection of Hg2+, Pb2+, Cd2+ and Cu2+, Journal of Sensors, (216). DOI:https://doi.org/10.1155/2016/1905454.

7. Grin, M.A., Suvorov, N.V. & Mironov, A.F. (2020) Natural chlorins as a promising platform for creating targeted theranostics in oncology, Mendeleev Communications, 30(4), pp. 406-418. DOI:https://doi.org/10.1016/j.mencom.2020.07.003.

8. Kustov, A.V., Berezin, D.B., Strelnikov, A.I. & Lapochkina, N.P. (2020) Antitumour and antimicrobial photodynamic therapy: mechanisms, targets, clinical and laboratory studies. M.: Largo (in Russian).

9. Giancola, C., Caterino, M., D'Aria, F., Kustov, A.V., Belykh, D.V., Khudyaeva, I.S., Starseva, O.M., Berezin, D.B., Pylina, Y.I., Usacheva, T. & Amato, J. (2020) Selective binding of a bioactive porphyrin-based photosensitizer to the G-quadruplex from the KRAS oncogene promoter, International Journal of Biological Macromolecules, (145), pp. 244-251. DOI:https://doi.org/10.1016/j.ijbiomac.2019.12.152.

10. Kruk, N.N. (2019) Structure and optical properties of tetrapyrrole compounds. Minsk: BSTU (in Russian).

11. Gu, J, Peng, Y, Zhou, T, Ma, J., Pang, H. & Yamauchi, Y. (2022) Porphyrin-based framework materials for energy conversion, Nano Research Energy, 1(e9120009). DOI:https://doi.org/10.26599/NRE.2022.9120009.

12. Berezina, N.M., Berezin, M.B. & Semeikin, A.S. (2019) Solvation interactions and photostability of tetrakis(1-methylpyridyl)porphyrin derivatives, Journal of Molecular Liquids, (290). DOI:https://doi.org/10.1016/j.molliq.2019.111196.

13. Amorim, C.F., Iglesias, B.A., Pinheiro, T.R., Lacerda, L.E., Sokolonski, A.R., Pedreira, B.O., Moreira, K.S., Burgo, L.T.A., Meyer, R., Azevedo, V. & Portela, R.W. (2023) Photodynamic inactivation of different Candida species and inhibition of biofilm formation induced by water-soluble porphyrins, Photodiagnosis and Photodynamic Therapy, 42(103343). DOI:https://doi.org/10.1016/j.pdpdt.2023.103343.

14. Fialkov, Y., Ya. (1990) Solvent as a chemical process control tool. L.: Khimiya (in Russian).

15. Himanshu, P. & Khare, A. (2005) Cryoscopic studies of α-amino acids in water, Journal of Molecular Liquids, (122), pp. 61-64.

16. Berezina, N.M., Berezin, M.B., Minh, D.N. & Bazanov, M.I. (2017) Solvation and coordination interactions of tetrapyridylporphyrin in aqueous solutions. Thermal stability, Rossijskij zhurnal obshhej khimii, 87(3), pp. 639-650. DOI:https://doi.org/10.1134/S1070363217030422 (in Russian).

17. Berezina, N.M., Bazanov, M.I. Semeikin, A.S. &, Berezin, M.B. (2009) The physicochemical properties of complexones, tetrapyridylporphin derivatives, Zhurnal Fizicheskoj Khimii, 83(5), pp. 903-910 (in Russian).

18. Berezina, N.M., Bazanov, M.I. Semeikin, A.S. & Berezin, M.B. The physicochemical properties of complexones, tetrapyridylporphin derivatives, Russian Journal of Physical Chemistry, 85(5), pp. 785-791. DOI:https://doi.org/10.1134/S0036024409050185.

Login or Create
* Forgot password?