Ivanovo, Ivanovo, Russian Federation
The authors modified cotton cellulose with anthranilic acid to obtain a new sorbent capable of efficient extraction of heavy metal ions from aqueous solutions. We conducted the modification in two stages: at the first stage, we obtained dialdehyde cellulose by oxidation of cellulose with sodium metaperiodate; at the second stage, we treated dialdehyde cellulose with anthranilic acid to obtain a ready-made sorbent. The authors determined the optimum conditions for modifying cotton cellulose to achieve maximum sorption of iron(II) and copper(II) ions. We studied the equilibrium-kinetic characteristics of the original and modified cotton cellulose. Also, we have processed the results of the kinetic experiment within the framework of pseudo-first- and pseudo-second-order kinetics models. We selected sorption isotherms, processed them within the framework of the Langmuir model, and determined the values of the ultimate sorption capacity (A∞). The modification of cotton cellulose enables to increase its sorption capacity significantly. According to the results, the A∞ of the modified sorbent is about 4-5 times higher than the ultimate sorption capacity of native cotton cellulose to Cu(II) and Fe(II) ions. In contrast, we obtained and compared the IR spectra of anthranilic acid-modified cellulose and native cellulose. Additionally, we obtained SEM images of the modified sorbent and the native cotton cellulose surface structure.
cotton cellulose, modification, anthranilic acid, sorption, ions Cu(II) and Fe(II)
1. Humelnicu, D., Lazar, M.M., Ignat, M., Dinu, I.A., Dragan, E.S. & Dinu, M.V. (2019) Removal of heavy metal ions from multi-component aqueous solutions by eco-friendly and low-cost composite sorbents with anisotropic pores, J. Haz. Mat., 381, 120980 [online]. Available at: https://doi.org/10.1016/j.jhazmat.2019.120980
2. Yadav, S., Yadav, A., Bagotia, N., Sharma, A.K. & Kumar, S. (2021) Adsorptive potential of modified plant-based adsorbents for sequestration of dyes and heavy metals from wastewater, A review Journal of Water Process Engineering, 42, 102148 [online]. Available at: https://doi.org/10.1016/j.jwpe.2021.102148
3. Agarwal, A., Upadhyay, U., Sreedhar, I., Singh, S.A. & Patel, C.M. (2020) A review on valorization of biomass in heavy metal removal from wastewater, J. Water Proc. Eng., 38, 101602 [online]. Available at: https://doi.org/10.1016/j.jwpe.2020.101602
4. Meseldzija, S., Petrovic, J., Onjia, A., Volkov-Husovic, T., Nesic, A. & Vukelic, N. (2019) Utilization of agro-industrial waste for removal of copper ions from aqueous solutions and mining-wastewater, Journal of Industrial and Engineering Chemistry, 75, pp. 246–252 [online]. Available at: https://doi.org/10.1016/j.jiec.2019.03.031
5. Prokof'ev, V.Y. & Gordina, N.E. (2013) A study of thermal treatment and hydrothermal crystallization stages in production of granulated NAA zeolite from mechanically activated metakaolin, Zhurnal prikladnoj khimii, 86(3), pp. 332-338 (in Russian).
6. Prokof'ev, V.Yu., Gordina, N.E. & Zhidkova, A.B. (2011) Synthesis of granulated zeolites with NAA structure from kaolin, Izvestija vuzov. Khimija i khimicheskaja tehnologija, 54(12), pp. 77-80 (in Russian).
7. Gordina, N.E., Prokof’ev, V.Y., Hmylova, O.E. & Kul’pina, Y.N. (2017) Effect of ultrasound on the thermal behavior of the mixtures for the LTA zeolite synthesis based on metakaolin, Journal of Thermal Analysis and Calorimetry, 129(3), pp.1415-1427.
8. Saavedra, M.I., Miñarro, M.D., Angosto, J.M. & Fernández-López, J.A. (2019) Reuse potential of residues of artichoke (Cynara scolymus L.) from industrial canning processing as sorbent of heavy metals in multimetallic effluents, Industrial Crops & Products, 141, 111751 [online]. Available at: https://doi.org/10.1016/j.indcrop.2019.111751
9. Shrestha, R., Ban, S., Devkota, S., Sharma, S., Joshi, R., Tiwari, A.P., Kim, H.Y. & Joshi, M.K. (2021) Technological trends in heavy metals removal from industrial wastewater: A review, Journal of Environmental Chemical Engineering, 9(4), 105688 [online]. Available at: https://doi.org/10.1016/j.jece.2021.105688
10. Nikiforova, T.E., Kozlov, V.A., Rodionova, M.V. & Modina, E.A. (2009) Sorption of zinc ions by products containing cellulose and protein components, Izvestija vuzov. Himija i himicheskaja tehnologija, 52(3), pp. 27 31 (in Russian)
11. Nazaripour, M., Reshadi, M.A.M., Mirbagheri, S.A., Nazaripour, M. & Bazargan, A. (2021) Research trends of heavy metal removal from aqueous environments, Journal of Environmental Management, 287, 112322 [online]. Available at: https://doi.org/10.1016/j.jenvman.2021.112322
12. Kozlov, V.A., Nikiforova, T.E., Loginova, V.A. & Koifman, O.I. (2015) Mechanism of protodesorption – exchange of heavy metal cations for protons in a heterophase system of H2O-H2SO4-MSO4 – cellulose sorbent, Journal of Hazardous Materials, 299, pp. 725-732. DOI:https://doi.org/10.1016/j.jhazmat.2015.08.004.
13. Singha, B. & Das, S.K. (2013) Adsorptive removal of Cu(II) from aqueous solution and industrial effluent using natural/agricultural wastes, Colloids and Surfaces B: Biointerfaces, 107, pp. 97–106 [online]. Available at: http://dx.doi.org/10.1016/j.colsurfb.2013.01.060
14. Nikiforova, T.E. & Kozlov, V.A. (2012) Comparison of models of copper (II) and nickel (II) cations sorption from aqueous solutions by cotton cellulose, Zhurnal fizicheskoj khimii, 86(10), pp. 1724-1729 (in Russian).
15. Nikiforova, T.E., Kozlov, V.A. & Islyaikin, M.K. (2012) Acid-base interactions and complex formation while recovering copper(ii) ions from aqueous solutions using cellulose adsorbent in the presence of polyvinylpyrrolidone, Zhurnal fizicheskoj khimii, 86(12), pp. 1974-1984 (in Russian).
16. Nikiforova, T.E., Kozlov, V.A. & Islyaikin, M.K. (2012) Acid-base interactions and complex formation while recovering copper(ii) ions from aqueous solutions using cellulose adsorbent in the presence of polyvinylpyrrolidone, Russian Journal of Physical Chemistry, 86(12), pp. 1974-1984.
17. Beaugeard, V., Muller, J., Graillot, A., Ding, X., Robin, J.-J. & Monge, S. (2020) Acidic polymeric sorbents for the removal of metallic pollution in water: A review, Reactive and Functional Polymers, 152(3), 104599 [online]. Available at: https://doi.org/10.1016/j.reactfunctpolym.2020.104599
18. Nikiforova, T.E., Kozlov, V.A. & Sofronov, A.R. (2023) Effect of chemical modification of cotton cellulose by aminoacetic acid on the sorption of Cu(II) and Fe(II) ions, From Chemistry Towards Technology Step-By-Step, 4(1), pp. 32-42 [online]. Available at: http://chemintech.ru/index.php/tor/2023-4-1 (in Russian).
19. Klemm, D., Philipp, B., Heinze, D., Heinze, U. & Wagenknecht, W. (1998) Comprehensive cellulose chemistry. Vol. 1: Fundamentals and Analytical Methods. Wiley-WCH, Weinheim, Germany.
20. Kokotov, Yu.A. & Pasechnik, V.A. (1970) Equilibrium and kinetics of ion exchange. L.: Khimiya (in Russian).
21. Ahnazarova, S.L. & Kafarov, V.V. (1985) Methods of experiment optimisation in chemical technology. Moscow: Vysshaya Shkola (in Russian).