PRINCIPLES OF AEROBIC OXIDATION OF ETHYLBENZENE TO HYDROPEROXIDE UNDER THE PRESENCE OF PHTHALIMIDE CATALYSTS
Abstract and keywords
Abstract (English):
Issledovany osnovnye zakonomernosti processa aerobnogo zhidkofaznogo okisleniya etilbenzola do gidroperoksida. Ustanovleno, chto primenenie ftalimidnyh katalizatorov (N gidroksiftalimid i ego proizvodnye) pozvolyaet povysit' skorost' okisleniya dannogo uglevodoroda v 1,5-2 raza po sravneniyu s iniciatorami razlichnoy prirody. Pri etom sohranyaetsya vysokaya selektivnost' obrazovaniya celevogo gidroperoksida – okolo 90%. Na osnovanii eksperimental'nyh dannyh rekomendovany usloviya osuschestvleniya reakcii okisleniya etilbenzola v prisutstvii ftalimidnyh katalizatorov. Poluchennye rezul'taty mogut byt' ispol'zovany dlya usovershenstvovaniya tehnologii sovmestnogo proizvodstva oksida propilena i stirola – cennyh produktov osnovnogo organicheskogo i neftehimicheskogo sinteza.

Keywords:
etilbenzol, zhidkofaznoe aerobnoe okislenie, gidroperoksid etilbenzola, N-gidroksiftalimid, ftalimidnye katalizatory, oksid propilena, stirol
References

1. Budarina V.I. Neftehimiya. Ekologicheski chistoe poluchenie oksida propilena. HPPO-process // XI Vserossiyskiy festival' nauki: sb. dokl. Nizhniy Novgorod: NGASU, 2021. S. 41-44. URL: https://www.elibrary.ru/item.asp?id=47328061

2. Voronov N.A. Analiz sovremennyh tehnologiy proizvodstva oksida propilena // NefteGazoHimiya. 2022. № 3. S. 22-26. DOI:https://doi.org/10.24412/2310-8266-2022-3-22-26

3. Kawabata T., Yamamoto J., Koike H., Yoshida S. Trends and Views in the Development of Technologies for Propylene Oxide Production // R&D Report, “SUMITOMO KAGAKU”, 2019. Vol. 2019, no. 1. P. 8

4. Kurganova E.A., Frolov A.S., Korshunova A.I., Koshel G.N., Yarkina E.M. Hydroperoxide method for the synthesis of p-tert-butylphenol // Russian Chemical Bulletin, International Edition. 2021.Vol. 70, no. 10. P. 1951-1956. DOI:https://doi.org/10.1007/s11172-021-3302-4

5. Kurganova E.A., Frolov A.S., Koshel' G.N., Kabanova V.S. Izuchenie reakcii okisleniya ciklogeksilbenzola v prisutstvii rastvoriteley // Ot himii k tehnologii shag za shagom. 2022. T. 3, vyp. 1. S. 21-27. DOI:https://doi.org/10.52957/27821900_2022_01_21. URL: http://chemintech.ru/index.php/tor/2022tom3no1

6. Gumerova E.R., Efanova E.A., Murtazin N.F. Sovershenstvovanie processa okisleniya etilbenzola do gidroperoksida etilbenzola // Vestnik Kazanskogo tehnologicheskogo universiteta. 2015. № 18. URL: https://cyberleninka.ru/article/n/sovershenstvovanie-protsessa-okisleniya-etilbenzola-do-gidroperoksida-etilbenzola

7. Golubeva I.A., Zhagfarov F.G. Gazopererabatyvayuschie predpriyatiya Rossii – istochniki syr'ya dlya neftegazohimii. Problemy i puti resheniya // Materialy III Mezhdunar. nauch.-tehn. foruma po himicheskim tehnologiyam i neftegazopererabotke «Neftehimiya – 2020». Minsk: BGTU, 2020. S. 9-13. URL: https://elib.belstu.by/handle/123456789/36965

8. Huafeng Shao, Xiaoxue Chen, Aihua He. Strategy for isoprene-styrene multi-block copolymers obtained by stereospecific copolymerization through TiCl4/MgCl2 catalyst // Materials Today Communications. 2022. Vol. 30. URL: https://doi.org/10.1016/j.mtcomm.2021.103044

9. Anname L., Anzel F., Daniel O., Rehana M.-E. Magnetic styrene polymers obtained via coordination polymerization of styrene by Ni and Cu nanoparticles // Inorganic Chemistry Communications. 2022. Vol. 142. URL: https://doi.org/10.1016/j.inoche.2022.109586

10. Danov S.M., Sulimov A.V., Ryabova T.A., Ovcharov A.A. Osnovnye tendencii razvitiya proizvodstva oksida propilena // Trudy Nizhegorodskogo gosudarstvennogo tehnicheskogo universiteta im. R.E. Alekseeva. 2011. № 3(90). S. 267-273

11. Smolin R.A., Elimanova G.G., Batyrshin N N., Harlampidi H.E. Gidroperoksidnoe epoksidirovanie model'nogo oktena-1 v prisutstvii molibdenovoy sini // Vestnik Kazanskogo tehnologicheskogo universiteta. 2011. № 18. URL: https://cyberleninka.ru/article/n/gidroperoksidnoe-epoksidirovanie-modelnogo-oktena-1-v-prisutstvii-molibdenovoy-sini

12. Minisci F. et al. Selective functionalisation of hydrocarbons by nitric acid and aerobic oxidation catalysed by N-hydroxyphthalimide and iodine under mild conditions // Tetrahedron Letters. 2003. Vol. 44, no. 36. P. 6919 6922. DOI:https://doi.org/10.1002/chin.200349050

13. Melone L. et al. Selective catalytic aerobic oxidation of substituted ethylbenzenes under mild conditions // Journal of Molecular Catalysis A: Chemical. 2012. Vol. 355. P. 155-160. DOIhttps://doi.org/10.1016/j.molcata.2011.12.009.

14. Habibi D. et al. Efficient catalytic systems based on cobalt for oxidation of ethylbenzene, cyclohexene and ox-imes in the presence of N-hydroxyphthalimide // Applied Catalysis A: General. 2013. Vol. 466. P. 282-299. DOI:https://doi.org/10.1016/j.apcata.2013.06.045.

15. Toribio P.P., Campos-Martin J.M., Fierro J.L., Toribio P.P. Liquid-phase ethylbenzene oxidation to hydrop-eroxide with barium catalysts // Journal of Molecular Catalysis A: Chemical. 2005. Vol. 227, no. 1-2. P. 101-105. DOI:https://doi.org/10.1016/j.molcata.2004.10.003.

16. Krylov I.B., Terent’ev A.O., Krylov I.B., Vil V.A. Cross-dehydrogenative coupling for the intermolecular C–O bond formation // Beilstein journal of organic chemistry. 2015. Vol. 11, no. 1. P. 92-146. DOI:https://doi.org/10.3762/bjoc.11.13

Login or Create
* Forgot password?