Ivanovo, Ivanovo, Russian Federation
Ivanovo, Ivanovo, Russian Federation
graduate student
Ivanovo, Ivanovo, Russian Federation
Predstavleny rezul'taty modificirovaniya hlopkovoy cellyulozy glicinom. Modificirovanie provodili cherez stadiyu okisleniya cellyulozy metaperiodatom natriya s obrazovaniem dial'degidcellyulozy i ee posleduyuschey obrabotkoy aminouksusnoy kislotoy. Issledovany sorbcionnye svoystva obrazcov ishodnoy i modificirovannoy cellyulozy po otnosheniyu k ionam Cu(II) i Fe(II). V kineticheskih eksperimentah ustanovleno, chto stepen' izvlecheniya ionov medi(II) i zheleza(II) modificirovannym obrazcom primerno na 25% vyshe po sravneniyu s ishodnym. Pri obrabotke kineticheskih krivyh sorbcii v ramkah modeli kinetiki psevdo-vtorogo poryadka polucheny naibolee korrektnye rezul'taty. Opredeleny optimal'nye usloviya modificirovaniya hlopkovoy cellyulozy dlya dostizheniya maksimal'noy sorbcii ionov medi(II) i zheleza(II), polucheny ravnovesno-kineticheskie harakteristiki modificirovannoy i nemodificirovannoy hlopkovoy cellyulozy. Pri izuchenii sorbcionnogo ravnovesiya v geterofaznoy sisteme «cellyuloznyy sorbent – vodnyy rastvor sul'fata metalla» snyaty izotermy sorbcii, provedena ih obrabotka v ramkah modeli Lengmyura i opredeleny velichiny predel'noy sorbcionnoy emkosti nativnoy i modificirovannoy cellyulozy. Ustanovleno, chto predel'naya sorbcionnaya emkost' modificirovannogo sorbenta primerno v 1,5 2 raza prevyshaet predel'nuyu sorbcionnuyu emkost' nativnoy hlopkovoy cellyulozy. Polucheny IK-spektry nativnoy cellyulozy i ee modificirovannogo obrazca. Vypolnen elementnyy analiz i polucheny izobrazheniya poverhnostnoy struktury sorbcionnyh materialov na osnove hlopkovoy cellyulozy s pomosch'yu SEM.
hlopkovaya cellyuloza, modificirovanie, aminouksusnaya kislota, sorbciya, iony Cu(II) i Fe(II)
1. Beni A.A., Esmaeili A. Biosorption, an efficient method for removing heavy metals from industrial effluents: A Review // Environmental Technology & Innovation. 2020. Vol. 17. 100503. URL: https://doi.org/10.1016/j.eti.2019.100503
2. Humelnicu D., Lazar M.M., Ignat M., Dinu I.A., Dragan E.S., Dinu M.V. Removal of heavy metal ions from multi-component aqueous solutions by eco-friendly and low-cost composite sorbents with anisotropic pores // J. Haz. Mat. 2020. Vol. 381. 120980. URL: https://doi.org/10.1016/j.jhazmat.2019.120980
3. Yadav S., Yadav A., Bagotia N., Sharma A.K., Kumar S. Adsorptive potential of modified plant-based adsor-bents for sequestration of dyes and heavy metals from wastewater // A review Journal of Water Process Engi-neering. 2021. Vol. 42. 102148. URL: https://doi.org/10.1016/j.jwpe.2021.102148
4. Noli F., Kapashi E., Kapnisti M. Biosorption of uranium and cadmium using sorbents based on Aloe vera wastes // Journal of Environmental Chemical Engineering. 2019. Vol. 7. 102985. URL: https://doi.org/10.1016/j.jece.2019.102985
5. Nikiforova T.E., Kozlov V.A., Odincova O.I. Zakonomernosti raspredeleniya ionov medi (II) i nikelya (II) v geterofaznoy sisteme vodnyy rastvor – modificirovannoe l'nyanoe volokno // Ros. him. zhurn. (Zhurn. Ros. him. ob-va im. D.I. Mendeleeva. 2015. T. 59, vyp. 4. S. 76-84.
6. Quyen V., Pham T.- H., Kim J., Thanh D.M., Thang P.Q., Le Q.V., Jung S.H., Kim T.Y. Biosorbent derived from coffee husk for efficient removal of toxic heavy metals from wastewater // Chemosphere. 2021. Vol. 284. 131312. URL: https://doi.org/10.1016/j.chemosphere.2021.131312
7. Nikiforova, T.E., Kozlov V.A. Sopostavlenie modeley sorbcii kationov medi(II) i nikelya(II) iz vodnyh rastvorov hlopkovoy cellyulozoy // ZhFH. 2012. T. 86, vyp. 10. S. 1724-1729
8. Anantha R.K., Kota S. Bio-composites for the sorption of copper from aqueous solution: A comparative study // Groundwater for Sustainable Development. 2018. Vol. 7. R. 265-276. URL: https://doi.org/10.1016/j.gsd.2018.06.007
9. Agarwal A., Upadhyay U., Sreedhar I., Singh S.A., Patel C.M. A review on valorization of biomass in heavy metal removal from wastewater // J. Water Proc. Eng. 2020. Vol. 38. 101602. URL: https://doi.org/10.1016/j.jwpe.2020.101602
10. Sancey B., Trunfio G., Charles J., Minary J.-F., Gavoille S., Badot P.-M., Crini G. Heavy metal removal from industrial effluents by sorption on cross-linked starch: Chemical study and impact on water toxicity // Journal of Environmental Management. 2011. Vol. 92. 765e772. DOI:https://doi.org/10.1016/j.jenvman.2010.10.033.
11. Aniagor C.O., Abdel-Halim E.S., Hashem A. Evaluation of the aqueous Fe (II) ion sorption capacity of functionalized microcrystalline cellulose // J. Env. Chem. Eng. 2021. Vol. 9. 105703. URL: https://doi.org/10.1016/j.jece.2021.105703
12. Nikiforova T.E., Kozlov V.A., Loginova V.A. Peculiarities of the adsorption of heavy-metal ions from aqueous media by modified cellulose // Adsorption Science & Technology. 2014. Vol. 32, no. 5. R. 389-402.
13. Mahajan G., Sud D. Application of ligno-cellulosic waste material for heavy metal ions removal from aqueous solution // J. Env. Chem. Eng. 2013/ Vol. 1. R. 1020–1027. URL: http://dx.doi.org/10.1016/j.jece.2013.08.013
14. Aniagor C.O., Abdel-Halim E.S., Hashem A. Evaluation of the aqueous Fe (II) ion sorption capacity of functionalized microcrystalline cellulose // Journal of Environmental Chemical Engineering. 2021. Vol. 9. 105703. URL: https://doi.org/10.1016/j.jece.2021.105703
15. Nikiforova T.E., Kozlov V.A., Natareev S.V., Dubkova E.A. Vliyanie plazmennogo modificirovaniya na sorbcionnye svoystva l'nyanogo volokna // Izv. vuzov. Himiya i him. tehnologiya. 2014. T. 7, vyp. 3. S. 91-97.
16. Mahour S., Verma S.K., Srivastava S. Functionalized agro-waste for toxic metal remediation from water bodies: A green pre-treatment process // Materials Today: Proceedings. 2022. Vol. 50. R. 287–292. URL: https://doi.org/10.1016/j.matpr.2021.06.330
17. Beaugeard V., Muller J., Graillot A., Ding X., Robin J.-J., Monge S. Acidic polymeric sorbents for the removal of metallic pollution in water: A review // Reactive and Functional Polymers. 2020. Vol. 152. 104599. URL: https://doi.org/10.1016/j.reactfunctpolym.2020.104599