THERMODYNAMICS OF BUTADIENE-1,3 DISSOLUTION PROCESSES IN AQUEOUS-AMMONIA SOLUTIONS
Abstract and keywords
Abstract (English):
The article deals with thermodynamics of butadiene-1,3 dissolution in aqueous-ammonia solutions of potassium nitrate at the temperature range of 20 80 0C. Based on the data obtained we found that the solubility of butadiene-1,3 in aqueous-ammonia solutions follows the Henry's law. The potassium nitrate has a desalinizing effect on the solubility of butadiene-1,3 which decreases with increasing temperature. The addition of ammonia to water and aqueous solutions of potassium nitrate increases the solubility of butadiene-1,3. We have determined the thermodynamic functions of the dissolution process of butadiene-1,3, and the thermodynamic characteristics of the hydrated hydrocarbon in aqueous-ammonia solutions of potassium nitrate. The increase of dissolution heat of butadiene-1,3 in aqueous ammonia solution of potassium nitrate confirms the assumption of hydrogen bonding between hydrogen atoms of ammonia molecule and p-electrons of butadiene-1,3. Comparison of the numerical values of thermodynamic functions of butadiene-1,3 and 2-methylpropene dissolution process showed that both enthalpy and entropy changes increase with increasing degree of unsaturation of the mole-cule.

Keywords:
thermodynamic characteristics, butadiene-1,3, solubility, aqueous-ammonia solutions, potassium nitrate, desalting, Henry's coefficients
Text
Publication text (PDF): Read Download
References

1. Smirnova, E.A. (2020) Stability of complex compounds of silver (I) and copper (I) ions with unsaturated hydrocarbons and ammonia, From Chemistry towards Technology Step-By-Step, 1(1), pp. 57-62. DOI:https://doi.org/10.52957/2782I900_2020_01_56 [online]. Available at: http://chemintech.ru/index.php/tor/2020tom1n1 (in Russian).

2. Smirnova, E.A., Latypova, O.I. & Pobegalova, D.N. (2008) Study of dissolubility of unsaturated hydrocarbons in water and water-ammonia solutions of electrolytes, Izvestiya vuzov. Khimiya i khimicheskaya tekhnologiya, 51(8), pp. 22-24 (in Russian).

3. Mazunin, S.A. & Chechulin, V.L. (2012) Desalination as a physical and chemical basis for low-waste methods of potassium and ammonium phosphate production. Perm: PGNIU (in Russian).

4. Mazunin, S.A., Panasenko, V.A., Zubarev, M.P. & Mazunina, E.L. (1999) Study of dissolubility in system Na+, NH4+/HCO3-, Cl- - H2O at 15, 20, 25 and 30 °C, Zhurnal neorganicheskoj khimii, 44(6), pp. 999–1007 (in Russian).

5. Lucyk, A.I., Rudakov, B.E. & Gundilovich, G.G. (1992) Dissolubility of hydrocarbons in the water-nitric acid system, Ukrainskij himicheskij zhurnal, 58(8), pp. 646-650 (in Russian).

6. Mochalin, V.N. (2000) Thermodynamics of dissolution of non-electrolytes in the water-acetic acid and water-sulphuric acid systems. PhD. Donetsk (in Russian).

7. Mirgorod, Y.A. (2010) Liquid-liquid phase transition in aqueous solutions of n-hydrocarbons and am-phiphiles, Pis'ma v zhurnal tekhnicheskoj fiziki, 36(19), pp. 37-43 (in Russian).

8. Mirgorod, Y.A. (2009) Thermodynamic analysis of the structure of aqueous solutions of C12-C18 hydrocar-bons, Zhurnal strukturnoj khimii, 50(3), pp. 478-492 (in Russian).

9. Buchanan, P., Aldiwan, N., Soper, A. K., Creek, J.L. & Koh, C.A. (2005) Decreased structure on dissolving methane in water, Chem. Phys. Lett., 415(1), pp. 89-93. DOI:https://doi.org/10.1016/j.cplett.2005.08.064.

10. Tsonopoulos C. (1999) Thermodynamic analysis of the mutual solubility of normal alkanes and water, Fluid Phase Equilibria, 156, pp. 21-33. DOI:https://doi.org/10.1016/S0378-3812(99)00021-7.

11. Mirgorod, Y.A. (2014) Polyamorphic liquid-liquid transition in aqueous solutions of n-hydrocarbons and surfactants: evaluation of enthalpy, isothermal compressibility and internal pressure, Izvestiya Yugo-Zapadnogo gos. un-ta. Ser. Tekhnika i tekhnologii, (3), pp. 91-98 (in Russian).

12. Siva, Prasad V., Rajagopal, E. & Manohara, M.N. (2010) Thermodynamic properties of ternary mixtures con-taining water, 2-ethoxyethanol, and t-butanol at 298.15 K, Russian Journal of Physical Chemistry, 84, pp. 2211 2216. DOI:https://doi.org/10.1007/S10973-005-0651-4.

13. Dougan, L., Bates, S.P., Hargreaves, R., Fox, J.P. (2004) Methanol-water solutions: a bi-percolating liquid mix-ture, J. Chem. Phys., 121, pp. 6456-6462. DOI:https://doi.org/10.1063/1.1789951.

14. Petersen, C. Tielrooij, K.-J. & Bakker, H. J. 2009Strong temperature dependence of water reorientation in hydrophobic hydration shells, J. Chem. Phys., 130(21), 214511. DOI:https://doi.org/10.1063/1.3142861.

15. Lyons, A.S., Rick, Jr. & Rick, S.W. (2021) Simulations of water and hydrophobic hydration using a neural net-work potential, Chemical Physics, (7), 11 p. DOI: orghttps://doi.org/10.48550/arXiv.2101.02754 [online]. Available at: https://arxiv.org/pdf/2101.02754.pdf

16. Shiraga, K., Suzuki, T., Kondo, N. & Ogawa, Y. (2014) Hydration and hydrogen bond network of water around hydrophobic surface investigated by terahertz spectroscopy, J. Chem. Phys., 141(23), 235103. DOI: org/10.1063/1.4903544.

Login or Create
* Forgot password?