Yaroslavl, Yaroslavl, Russian Federation
Yaroslavl, Yaroslavl, Russian Federation
employee from 01.01.2009 until now
Yaroslavl, Yaroslavl, Russian Federation
Yaroslavl, Yaroslavl, Russian Federation
547.814.1
The paper dwells on the formation and accumulation patterns of dia-stereomeric 2-thio-1,2,3,4,4a,10b-hexahydro-5H-chromeno[4,3-d]pyrimidin-5-ones resulting from the acid-catalyzed condensation of dihydropyrimidin-2-thions with resorcinols
2-thio-1,2,3,4,4a,10b-hexahydro-5H-chromeno[4,3-d]pyrimidine-ones, acid-catalyzed condensation, monitoring
1. Kabanova M.V., Makarova E.S., Chirkova Z.V., Filimonov S.I. Simplified method for obtaining 3-bromindol-5,6-dicarbonitrils from 1-hydroxindol-5,6-dicarbonitriles // From Chemistry Towards Technology Step-By-Step. 2021. Vol. 2, no. 1. R. 111-115. DOI:https://doi.org/10.52957/27821900_2021_01_111. URL: http://chemintech.ru/index.php/tor/2021tom2no1.
2. Abramov I.G., Karpov R.Z. Synthesis of 4-heterylamino-5-nitrophthalonitriles based on 4-bromo-5-nitrophthalonitrile // From Chemistry Towards Technology Step-By-Step. 2020. Vol. 1, no 1. P. 62-67. DOI:https://doi.org/10.52957/27821900_2020_01_62. URL: http://chemintech.ru/index.php/tor/2020tom1n1.
3. Kotov A.D., Kunichkina A.S., Proskurina I.K. Transformation of 5-halogen-3-aril-2,1-benzisoxazoles into quinazolines // From Chemistry Towards Technology Step-By-Step. 2021. Vol. 2, no. 4. P. 81-84. DOI:https://doi.org/10.52957/27821900_2021_04_81. URL: http://chemintech.ru/index.php/tor/2021-2-4.
4. Marinescu M. Biginelli Reaction Mediated Synthesis of Antimicrobial Pyrimidine Derivatives and Their Therapeutic Properties // Molecules. 2021. Vol. 26, no. 19. P. 6022. DOI:https://doi.org/10.3390/molecules26196022. URL: https://www.mdpi.com/1420-3049/26/19/6022.
5. Bosica G., Cachia F., De Nittis R., Mariotti N. Efficient One-Pot Synthesis of 3,4-Dihydropyrimidin-2(1H)-ones via a Three-Component Biginelli Reaction // Molecules. 2021. Vol. 26, no. 12. P. 3753. DOI:https://doi.org/10.3390/molecules26123753. URL: https://www.mdpi.com/1420-3049/26/12/3753.
6. Santosh R. One-Pot Synthesis of Pyrimido[4,5-d]pyrimidine Derivatives and Investigation of Their Antibacterial, Antioxidant, DNA-Binding and Voltammetric Characteristics // Chemistry Select. 2019. Vol. 4, no. 3. P. 990–996. DOI:https://doi.org/10.1002/slct.201803416. URL: https://chemistry-europe.onlinelibrary.wiley.com/doi/abs/10.1002/slct.201803416.
7. Metsämuuronen S., Sirén, H. Bioactive phenolic compounds, metabolism and properties: A review on valuable chemical compounds in Scots pine and Norway spruce // Phytochem. Rev. 2019. Vol. 18, no. 3. P. 623-664. DOI:https://doi.org/10.1007/s11101-019-09630-2. URL: https://link.springer.com/article/10.1007/s11101-019-09630-2.
8. Quideau S., Deffieux D., Douat-Casassus C., Pouysègu L. Plant Polyphenols: Chemical Properties, Biological Activities, and Synthesis // Angew. Chem. 2011. Vol. 50, no. 3. P. 586–621. DOI:https://doi.org/10.1002/anie.201000044. URL: https://onlinelibrary.wiley.com/doi/abs/10.1002/anie.201000044.
9. Emami S. Current developments of coumarin-based anti-cancer agents in medicinal chemistry // Eur. J. Med. Chem. 2015. Vol. 102. P. 611–630. DOI:https://doi.org/10.1016/j.ejmech.2015.08.033. URL: https://www.sciencedirect.com/science/article/pii/S0223523415302178.
10. Bhosle M.R., Wahul D.B., Bondle G.M., Sarkate A., Tiwari S.V. An efficient multicomponent synthesis and in vitro anticancer activity of dihydropyranochromene and chromenopyrimidine-2, 5-diones // Synth. Commun. 2018. Vol. 48, no. 16. P. 2046-2060. DOI:https://doi.org/10.1080/00397911.2018.1480042. URL: https://www.tandfonline.com/doi/abs/10.1080/00397911.2018.1480042.
11. Kumari S., Shakoor S.A., Khullar S., Mandal S.K., Sakhuja R. An unprecedented tandem synthesis of fluorescent coumarin-fused pyrimidines via copper-catalyzed cross-dehydrogenative C (sp3)–N bond coupling // Org. Biomol. Chem. 2018. Vol. 16, no. 17. P. 3220-3228. DOI:https://doi.org/10.1039/C8OB00586A. URL: https://pubs.rsc.org/en/content/articlelanding/2017/sc/c8ob00586a/unauth.
12. Patil R.B., Sawant S.D. Synthesis, docking studies and evaluation of antimicrobial and in vitro antiproliferative activity of 5H-chromeno[4,3-d]pyrimidin-2-amine derivatives // Int. J. Pharm. Pharm. Sci. 2015. Vol. 7, no. 2. P. 304-308. URL: https://innovareacademics.in/journals/index.php/ijpps/issue/ view/Vol7Issue2.
13. Rajanarendar E., Reddy M.N., Krishna S.R., Murthy K.R., Reddy Y.N., Rajam M.V. Design, synthesis, antimicrobial, anti-inflammatory and analgesic activity of novel isoxazolylpyrimido[4,5-b]quinolines and isoxazolylchromeno[2,3-d]pyrimidin-4-ones // Europ. J. Med. Chem. 2012. Vol. 55. P. 273-283. DOI:https://doi.org/10.1016/j.ejmech.2012.07.029. URL: https://www.sciencedirect.com/science/article/pii/ S0223523412004552
14. Filimonov S.I., Chirkova Zh.V., Kabanova M.V., Makarova E.S., Shetnev A.A., Panova V.A., Suponitsky K.Yu. A Condensation of Biginelli Products with 1,3-Benzenediols: a Facile Access to Diastereomerically Pure Hexahydro-5H-chromeno[4,3-d]pyrimidin-5-ones // Chemistry Select. 2019. Vol. 4, no. 33. P. 9550–9555. DOI:https://doi.org/10.1002/slct.201901997. URL: https://chemistry-europe.onlinelibrary. wiley.com/doi/10.1002/slct.201901997