Yaroslavl, Yaroslavl, Russian Federation
Yaroslavl, Yaroslavl, Russian Federation
employee from 01.01.2009 until now
Yaroslavl, Yaroslavl, Russian Federation
Yaroslavl, Yaroslavl, Russian Federation
547.814.1
The paper dwells on the formation and accumulation patterns of diastereomeric 2-thio-1,2,3,4,4a,10b-hexahydro-5H-chromeno[4,3-d]pyrimidin-5-ones resulting from the acid-catalyzed condensation of dihydropyrimidin-2-thions with resorcinols.
2-thio-1,2,3,4,4a,10b-hexahydro-5H-chromeno[4,3-d]pyrimidine-ones, acid-catalyzed condensation, monitoring
1. Kabanova, M.V., Makarova, E.S., Chirkova, Z.V. & Filimonov, S.I. (2021) Simplified method for obtaining 3-bromindol-5,6-dicarbonitrils from 1-hydroxindol-5,6-dicarbonitriles, From Chemistry Towards Technology Step-By-step, 2(1), pp. 111-115. DOI:https://doi.org/10.52957/27821900_2021_01_111. Available at: http://chemintech.ru/index.php/tor/2021tom2no1.
2. Abramov, I.G. & Karpov, R.Z. (2020) Synthesis of 4-heterylamino-5-nitrophthalonitriles based on 4-bromo-5-nitrophthalonitrile, From Chemistry Towards Technology Step-By-Step, 1(1), pp. 62-67. DOI:https://doi.org/10.52957/27821900_2020_01_62. Available at: http://chemintech.ru/index.php/tor/2020tom1n1.
3. Kotov, A.D., Kunichkina, A.S. & Proskurina, I.K. (2021) Transformation of 5-halogen-3-aril-2,1-benzisoxazoles into quinazolines, From Chemistry Towards Technology Step-By-Step, 2(4), pp. 81-84. DOI:https://doi.org/10.52957/27821900_2021_04_81. Available at: http://chemintech.ru/index.php/tor/2021-2-4.
4. Marinescu, M. (2021) Biginelli Reaction Mediated Synthesis of Antimicrobial Pyrimidine Derivatives and Their Therapeutic Properties, Molecules, 26(19), p. 6022. DOI:https://doi.org/10.3390/molecules26196022. Available at: https://www.mdpi.com/1420-3049/26/19/6022.
5. Bosica, G., Cachia, F., De Nittis, R. & Mariotti, N. (2021) Efficient One-Pot Synthesis of 3,4-Dihydropyrimidin-2(1H)-ones via a Three-Component Biginelli Reaction, Molecules, 26(12), p. 3753. DOI:https://doi.org/10.3390/molecules26123753. Available at: https://www.mdpi.com/1420-3049/26/12/3753.
6. Santosh, R. (2019) One-Pot Synthesis of Pyrimido[4,5-d]pyrimidine Derivatives and Investigation of Their Antibacterial, Antioxidant, DNA-Binding and Voltammetric Characteristics, Chemistry Select, 4(3), pp. 990 996. DOI:https://doi.org/10.1002/slct.201803416. Available at: https://chemistry-europe.onlinelibrary.wiley.com/doi/abs/10.1002/slct.201803416.
7. Metsämuuronen S. & Sirén, H. (2019) Bioactive phenolic compounds, metabolism and properties: A review on valuable chemical compounds in Scots pine and Norway spruce, Phytochem. Rev. 18(3), pp. 623-664. DOI:https://doi.org/10.1007/s11101-019-09630-2. Available at: https://link.springer.com/article/10.1007/s11101-019-09630-2.
8. Quideau, S., Deffieux, D., Douat-Casassus, C. & Pouysègu, L. (2011) Plant Polyphenols: Chemical Properties, Biological Activities, and Synthesis, Angew. Chem., 50(3), pp. 586–621. DOI:https://doi.org/10.1002/anie.201000044. Available at: https://onlinelibrary.wiley.com/doi/abs/10.1002/anie.201000044.
9. Emami, S. (2015) Current developments of coumarin-based anti-cancer agents in medicinal chemistry, Eur. J. Med. Chem., 102, pp. 611–630. DOI:https://doi.org/10.1016/j.ejmech.2015.08.033. Available at: https://www.sciencedirect.com/science/article/pii/S0223523415302178.
10. Bhosle, M.R., Wahul, D.B., Bondle, G.M., Sarkate, A. & Tiwari, S.V. (2018) An efficient multicomponent synthesis and in vitro anticancer activity of dihydropyranochromene and chromenopyrimidine-2, 5-diones, Synth. Commun., 48(16), pp. 2046-2060. DOI:https://doi.org/10.1080/00397911.2018.1480042. Available at: https://www.tandfonline.com/doi/abs/10.1080/00397911.2018.1480042.
11. Kumari, S., Shakoor, S.A., Khullar, S., Mandal, S.K. & Sakhuja, R. (2018) An unprecedented tandem synthesis of fluorescent coumarin-fused pyrimidines via copper-catalyzed cross-dehydrogenative C (sp3)–N bond coupling, Org. Biomol. Chem, 16(17), pp. 3220-3228. DOI:https://doi.org/10.1039/C8OB00586A. Available at: https://pubs.rsc.org/en/content/articlelanding/2017/sc/c8ob00586a/unauth.
12. Patil, R.B. & Sawant, S.D. (2015) Synthesis, docking studies and evaluation of antimicrobial and in vitro antiproliferative activity of 5H-chromeno[4,3-d]pyrimidin-2-amine derivatives, Int. J. Pharm. Pharm. Sci., 7(2), pp. 304-308. Available at: https://innovareacademics.in/journals/index.php/ijpps/issue/ view/Vol7Issue2.
13. Rajanarendar, E., Reddy, M.N., Krishna, S.R., Murthy, K.R., Reddy, Y.N. & Rajam, M.V. (2012) Design, synthesis, antimicrobial, anti-inflammatory and analgesic activity of novel isoxazolylpyrimido[4,5-b]quinolines and isoxazolylchromeno[2,3-d]pyrimidin-4-ones, Europ. J. Med. Chem., 55, pp. 273-283. DOI:https://doi.org/10.1016/j.ejmech.2012.07.029. Available at: https://www.sciencedirect.com/science/article/pii/ S0223523412004552
14. Filimonov, S.I., Chirkova, Zh.V., Kabanova, M.V., Makarova, E.S., Shetnev, A.A., Panova, V.A. & Suponitsky, K.Yu. (2019) A Condensation of Biginelli Products with 1,3-Benzenediols: a Facile Access to Diastereomerically Pure Hexahydro-5H-chromeno[4,3-d]pyrimidin-5-ones, J. Chemistry Select, 4(33), pp. 9550–9555. DOI:https://doi.org/10.1002/slct.201901997. Available at: https://chemistry-europe.onlinelibrary.wiley.com/doi/10.1002/slct.201901997.