Yaroslavl, Yaroslavl, Russian Federation
employee
Yaroslavl, Yaroslavl, Russian Federation
The study concerns with the oxidation kinetics of primary alcohols and methylinooleate in sodium dodecyl sulphate micelles. The authors realise the effect of pH on the speed of the process and the structure of the alcohol, determining its location in the micellar system, affects the process.
ethanol, octanol, methylinooleate, sodium dodecyl sulphate, 2,2`-azobis(2-methylpropionamide) dihydrochloride
1. Menshchikova E.B., Lankin V.Z., Zenkov N.K., Bondar I.A., Krutov N.F., Trufakin V.A. Oxidative stress. Prooxidants and antioxidants. M.: Slovo, 2006. 556 p. (in Russian).
2. Pratt D., Tallman K., Porter N. Free Radical Oxidation of Polyunsaturated Lipids: New Mechanistic Insights and the Development of Peroxyl Radical Clocks. N. Acc. Chem. Res. 2011. V. 44. N 6. P. 458–467. DOI:https://doi.org/10.1021/ar200024c.
3. Garrec J., Monari A., Assfeld X., Mir L.M., Tarek M. Lipid Peroxidation in Membranes: The Peroxyl Radical Does Not “Float”. J. Phys. Chem. Lett. 2014. V. 5. P. 1653–1658.
4. Roginsky V. Chain-breaking antioxidant activity of natural polyphenols as determined during the chain oxidation of methyl linoleate in Triton X-100 micelles. Arch. Biochim. Biophys. 2003. V. 414. P. 261-270. DOI:https://doi.org/10.1016/s0003-9861(03)00143-7.
5. Grebowski J., Konopko A., Krokosz A., DiLabio G. A., Litwinienko G. Antioxidant activity of highly hydroxylated fullerene C60 and its interactions with the analogue of α-tocopherol. Free Radical Biology and Medicine. 2020. V. 160. P. 734-744. DOI:https://doi.org/10.1016/j.freeradbiomed.2020.08.017
6. Kasaikina O., Mengele E., Plashchina I. Oxidation of nonionic surfactants with molecular oxygen. Colloid J. 2016. V. 78. P. 730-734. DOI:https://doi.org/10.1134/S1061933X16060065.
7. Roginsky V.A. Kinetics of chain oxidation of methylinooleate in micellar solutions of sodium dodecyl sulphate. Kinetika i Cataliz. 1996. V. 37. N 4. P. 521-527 (in Russian).
8. Hossain M., Blanchard G.J. Effects of ethanol and n-butanol on the fluidity of supported lipid bilayers. Chemistry and Physics of Lipids. 2021. V. 238. P. 105091. DOI:https://doi.org/10.1016/j.chemphyslip.2021.105091
9. Sokolov A.V., Popov S.V., Pliss E. M., Loshadkin D.V. Computer program "Kinetics of 2012- program to calculate the kinetic parameters of chemical and biochemical processes". Official Gazette of the Federal Service for Intellectual Property «Computer programs. Database. Integrated circuits». 2013. N 3.
10. Loshadkin D., Pliss E., Kasaikina O. Features of methyl linoleate oxidation in Triton X-100 micellar buffer solutions. J. Appl. Chem. 2020. V. 93. N 7. P. 1090-1095. DOI:https://doi.org/10.31857/S0044461820070178
11. Pliss E.M., Soloviev M.E., Loshadkin D.V., Molodochkina S.V., Kasaikina O.T. Kinetic model of polyunsaturated fatty acids oxidation in micelles. Chemistry and Physics of Lipids. 2021. V. 237. P. 105089. DOI:https://doi.org/10.1016/j.chemphyslip.2021.105089
12. Roginsky V., Barsukova T. Superoxide dismutase inhibits lipid peroxidation in micelles. Chem. Phys. Lipids. 2001. V. 111. P. 87-91. DOI:https://doi.org/10.1016/s0009-3084(01)00148-7.
13. Denisov E., Afanas'ev I. Oxidation and Antioxidants in Organic Chemistry and Biology. Boca Raton: CRC Press, 2005. 1024 p. DOI:https://doi.org/10.1201/9781420030853.
14. Richauda E., Audouina L., Fayollea B., Verdua J., Matisová-Rychlá L., Rychly´ J. Rate constants of oxidation of unsaturated fatty esters studied by chemiluminescence. Chemistry and Physics of Lipids. 2012. V. 165. P. 753–759. DOI:https://doi.org/10.1016/j.chemphyslip.2012.09.002
15. Xu L., Davis T. A., Porter N.A. Rate Constants for Peroxidation of Polyunsaturated Fatty Acids and Sterols in Solution and in Liposomes. J. Am. Chem. Soc. 2009. V. 131. P. 13037–13044. DOI:https://doi.org/10.1021/ja9029076