ANALYSIS OF THE MAIN CHARACTERISTICS OF THE PROCESS OF THROTTLE OF A LIQUID IN A CONTROL AXIAL VALVE
Abstract and keywords
Abstract (English):
This paper presents the results of a study of the main characteristics of the process of throttling a liquid in a control axial valve, taking into account the dependence of the modeled coefficient of hydraulic resistance on the design and operating parameters. In particular, the calculation of the throughput and throughput characteristics of the separator of the specified valve from the standpoint of varying the degree of its opening has been performed. The most significant factors influencing the change in these indicators of the axial valve operation are revealed. For example, at the maximum degree of valve opening, an increase in the diameter of the throttling holes by 2 times leads to an increase in the nominal throughput by 1.66 times and the throughput characteristic by 1.19 times. It is shown that in the selected ranges of changes in the design parameters of the throttling process of the working medium, an increase in the valve opening degree up to 60% leads to a smooth increase in the throughput characteristic to values not exceeding 0,3. The specified non-linear dependence of the flow characteristic of the control axial valve creates the prerequisites for choosing the profiling of this indicator. The practical application of the issues discussed in this study was reflected in the development of an engineering methodology for calculating design parameters for the corresponding control valve with the implementation of the process of throttling the flows of the working medium.

Keywords:
process, throttling, liquid, throughput, valve, parameters, coefficient of hydraulic resistance
Text
Publication text (PDF): Read Download
References

1. Knepp R., Deyli Dzh., Hemmit F. Kavitaciya. M.: Mir, 1974. 668 s.

2. Oksler G. Kavitaciya v armature? Razberemsya! Armaturostroenie. 2012. № 2 (77). S. 74–77.

3. Kapranova A., Neklyudov S., Lebedev A., Meltser A. Determination of the average parameters of cavitation bubbles in the flowing part of the control valves. Int. J. Mech. Eng. Technol. 2018. V. 9, No. 3. P. 25-31. Rezhim dostupa: https://www.iaeme.com/MasterAdmin/UploadFolder/IJMET_09_03_003/IJMET_09_03_003.pdf (Data obrascheniya 27.09.2020).

4. Arzumanov E.S. Gidravlicheskie reguliruyuschie organy sistem avtomatizirovannogo upravleniya. M.: Mashinostroenie, 1985. 256 s.

5. Chernoshtan V.I., Kuznecov V.A. Truboprovodnaya armatura TES. Spravochnoe posobie. M.: Izd. MEI, 2001. 368 s.

6. Lerner D.G., Spiridonov E.K., Forental' V.I. Kompleksnyy podhod k issledovaniyu drosseliruyuschego raspredelitelya. Izvestiya SNCRAN. 2011. T. 13. № 1 (2). -S. 459-462.

7. Patent RF № 175446. Pryamotochnyy reguliruyuschiy klapan / A.E. Lebedev, A.B. Kapranova, A.M. Mel'cer, S.A. Solopov, D.V. Voronin, V.S. Neklyudov, E.M. Serov; opubl. 2017.

8. Kapranova A.B., Lebedev A.E., Mel'cer A.M., Neklyudov S.V., Serov E.M. O metodah modelirovaniya osnovnyh stadiy razvitiya gidrodinamicheskoy kavitacii. Fundamental'nye issledovaniya. 2016. № 3 (chast' 2). S. 268-273. Rezhim dostupa: https://www.elibrary.ru/item.asp?id=25740700 (Data obrascheniya 27.09.2020).

9. Klimontovich, Yu.L. Turbulentnoe dvizhenie i struktura haosa: Novyy podhod k statisticheskoy teorii otkrytyh sistem. M.: LENAND, 2014. 328 s.

10. Kapranova A., Neklyudov S., Lebedev A., Meltser A. Qualitative evaluation of the coefficient of hydraulic resistance in the area of the divider of the fluid flow of the axial valve. Int. J. Mech. Eng. Technol. 2018. V. 9, N. 8. P. 153-159. Rezhim dostupa: https://www.iaeme.com/MasterAdmin/UploadFolder/ IJMET_09 _08_ 016/IJMET_09_08_016.pdf (Data obrascheniya 27.09.2020).

11. Kapranova A.B., Lebedev A.E., Meltser A.M., Solopov S.A. The application process of the Ornstein-Ulenbek to the formation of cavitation bubbles. Czas. Tech. Mech. 2016. V. 113.N. 2. P. 136-144. DOI:https://doi.org/10.4467/2353737XCT.16.101.5500. Rezhim dostupa: https://www.semanticscholar.org/paper/The-application-process-of-the-Ornstein-Ulenbek-to-Kapranova-Lebedev/fd23da0b8998ea9eaf058ff4f72acac6886 955fc (Data obrascheniya 27.09.2020).

12. Kapranova A., Miadonye A. Stochastic simulation of cavitation bubbles formation in the axial valve separator influenced by degree of opening. Journal of Oil, Gas and Petrochemical Sciences. 2019. V. 2. N. 2. R. 70-75. DOI:https://doi.org/10.30881/jogps.00026

13. Kapranova A., Lebedev A., Meltser A., Neklyudov S. The ensemble-averaged characteristics of the bubble system during cavitation in the separator. E3s Web of Conference. 2019. V. 140. 06005. DOI:https://doi.org/10.1051/e3sconf/201914006005

14. Kapranova A.B., Lebedev A.E., Mel'cer A.M., Neklyudov S.V. Stohasticheskaya model' processa obrazovaniya kavitacionnyh puzyrey v protochnoy chasti reguliruyuschego klapana. Vestnik IGEU. 2016. № 4. C. 24-29. DOI:https://doi.org/10.17588/2072-2672.2016.4.024-029

15. Franc J.-P., Michel J.-M. Fundamentals of Cavitation. Fluid Mechanics and Its Applications. 2005. V. 76. N 11. DOIhttps://doi.org/10.1007/1-4020-2233-6

16. S. Xu, Y. Qiao, X. Liu, C.C. Church, M. Wan Fundamentals of Cavitation. In: Wan M., Feng Y., Haar G. (eds). Cavitation in Biomedicine. Dordrecht: Springer, 2015. DOIhttps://doi.org/10.1007/978-94-017-7255-6_1

17. Qian J., Liu B., Jin Z., Zhang H., Lu A. Numerical analysis of flow and cavitation characteristics in a pilot-control globe valve with different valve core displacements. J. Zhejiang Univ. Sci. A. 2016, V. 17, N. 1. P. 54-64. DOI:https://doi.org/10.1631/jzus.A1500228

18. Arzumanov E.S. Raschet i vybor reguliruyuschih organov avtomaticheskih sistem. M.: Energiya, 1971. - 112 s.

19. GOST12893-2005. Klapany reguliruyuschie odnosedel'nye, dvuhsedel'nye i kletochnye. Obschie tehnicheskie usloviya. M.: Standartinform, 2008. 26 s.

20. Idel'chik I.E. Spravochnik po gidravlicheskim soprotivleniyam. M.: Mashinostroenie, 1975. 559 s.

21. GOSTR 52720-2007. Armatura truboprovodnaya. Terminy i opredeleniya. M.: Standartinform, 2007. 30 s.

22. Patent KR N 20180055897A. Valve / T. J. Preston. Published by 2018.

23. Patent US N 8297315B2. Throttle valve / V. Esveldt. Published by 2012.

24. Patent US N 4327757. Control valve / H.H. Weevers. Published by 1982.

25. Volgin G. The hydraulic resistance coefficient in the conditions of simultaneous effect of Re, Fr and B/h. E3S Web of Conferences. 2019. V. 97, 05031. DOIhttps://doi.org/10.1051/e3sconf/20199705031

26. Al'tshul' A.D. Gidravlicheskie soprotivleniya. M.: Nedra, 1970. 216 s.

27. Narasimhamurthy V.D., Andersson H. Turbulence statistics in a rotating ribbed channel. International Journal of Heat and Fluid Flow. 2014. V. 51. DOI:https://doi.org/10.1016/j.ijheatfluidflow.2014.10.008

28. Kireev V.N., Nizamova A., Urmancheev S.F. The hydraulic resistance of thermoviscous liquid flow in a plane channel with a variable cross-section. Journal of Physics Conference Series. 2019. V. 1158. N 3. 032014. DOI:https://doi.org/10.1088/1742-6596/1158/3/032014

29. Alfonsi G. Direct Numerical Simulation of Turbulent Flows. Applied Mechanics Reviews. 2011. V. 64. N. 2. 0802. DOI:https://doi.org/10.1115/1.4005282

30. Narasimhamurthy V.D., Andersson H. DNS of turbulent flow in a rotating rough channel. 8th Workshop on Direct and Large-Eddy Simulation: materials of the International Conference (January 2011). V. 15. DOI:https://doi.org/10.1007/978-94-007-2482-2_65

31. Kapranova A.B., Lebedev A.E., Mel'cer A.M., Neklyudov S.V. O vliyanii propusknoy sposobnosti osevogo klapana na parametry stohasticheskoy modeli kavitacii. RHZh (Zhurnal him. obschestva im. D.I. Mendeleeva). 2018. T. 62. № 4. C. 51-53. Rezhim dostupa: https://www.elibrary.ru/item.asp?id=36290376 (Data obrascheniya 27.09.2020).

32. GOSTR 55508-2013. Armatura truboprovodnaya. Metodika eksperimental'nogo opredeleniya gidravlicheskih i kavitacionnyh harakteristik. - M.: Standartinform, 2014. 38 s. GOSTR 55508-2013.

33. Kapranova A.B., Lebedev A.E., Neklyudov S.V., Melzer A.M. Engineering Method for Calculating of an Axial Valve Separator With an External Location of the Locking Part. Frontiers in Energy Research: Process and Energy Systems. March 2020. V. 8. article 32. P. 1-17. DOI:https://doi.org/10.3389/fenrg.2020.00032

34. Kapranova A.B., Lebedev A.E., Mel'cer A.M., Neklyudov S.V. Issledovanie povedeniya sistemy gaz–par vnutri kavitacionnogo puzyrya pri rabote osevogo klapana. Vestnik IGEU. 2020. № 3. S. 58-64.DOIhttps://doi.org/10.17588/2072-2672.2020.3.058-064

35. Kapranova A.B., Lebedev A.E., Melzer A.M., Neklyudov S.V. About Formation of Elements of a Cyber-Physical System for Efficient Throttling of Fluid in an Axial Valve. In monograph: Cyber-Physical Systems: Advances in Design &Modelling. Studies in Systems, Decision and Control / eds. A. Kravets, A. Bolshakov, M. Shcherbakov. V. 259.Springer, Cham, 2020. P. 109-119. DOI:https://doi.org/10.1007/978-3-030-32579-4_9

Login or Create
* Forgot password?