аспирант
Ярославль, Ярославская область, Россия
студент
Ярославль, Ярославская область, Россия
Ярославль, Ярославская область, Россия
We conducted quantum chemical modelling by REVPBE0 3,4-dihydro-2H-thiopyran-1,1-dioxide,3,4,6-triphenyl-3,4-dihydro-2H-thiopyran-1,1-dioxide and their anions. The authors calculated the Gibbs free energies for the reaction of their interaction with hydroxide anion as a base. We have found a difference in the acidic properties of the protons of the 2H-thiopyran rings and the positions of the reaction centres in the subsequent reactions involving the formed anions.
3,4-Dihydro-2H-thiopyran-1,1-dioxides, acidity, quantum chemical modelling, REVPBE0 method
1. Merkulova, E.A., Kolobov, A.V. & Ovchinnikov, K.L. (2019) A Convenient Synthesis of 3,4-Dihydro-2H-thiopyran-2,3-dicarboxylic Acid Derivatives, Rus. Chem. Bull., Int. Ed., 68(3), pp. 606-609. DOI:https://doi.org/10.1007/s11172-019-2462-y.
2. Merkulova, E.A., Kolobov, A.V, Ovchinnikov, K.L., Khrustalev, & V.N., Nenajdenko, V.G. (2021) Unsaturated Carboxylic Acids in the One-pot Synthesis of Novel Derivatives of 3,4-Dihydro-2H-thiopyran, Chemistry of Heterocyclic Compounds, 57(3), pp. 245-252. DOI:https://doi.org/10.1007/s10593-021-02900-y.
3. Chabanenko, R.M., Mykolenko, S.Yu., Kozirev, E.K. & Palchykov, V.A. (2018) Multigram Scale Synthesis of 3,4- and 3,6-Dihydro-2H-thiopyran 1,1-Dioxides and Features of their NMR Spectral Behavior, Synthetic Communications, 48(17), pp. 2198-2205. DOI:https://doi.org/10.1080/00397911.2018.1486427.
4. Ovchinnikov, K.L., Starostin, M.V. & Larionov, N.N. (2021) Quantum-chemical Study of the Regioselectivity of the Diels-Alder Heteroreaction of α,β-Unsaturated Thiocarbonyl Compounds with Unsymmetrical Dienophiles, From Chemistry Towards Technology Step-By-Step, 2(3), pp. 110-114. DOI:https://doi.org/10.52957/27821900_2021_03_110 [online]. Available at: http://chemintech.ru/index.php/tor/2021-2-2
5. Ovchinnikov, K.L., Karpov, I.D., Starostin, M.V. & Kolobov, A.V. (2021) Comparative Quantum-Chemical Analysis of the Reactivity of 1-Phenilbut-2-en-3-tyon and 2-(N-pirrolidinil)pent-2-en-4-tyon as Heterodiens in the Diels-Alder Reaction, From Chemistry Towards Technology Step-By-Step, 2(4), pp. 77-80. DOI:https://doi.org/10.52957/27821900_2021_04_77 [online]. Available at: http://chemintech.ru/index.php/tor/2021-2-3
6. Neese, F. (2012) The ORCA program system, Wiley Interdiscip. Rev. Comput. Mol. Sci., 2(1), pp 73-78. DOI:https://doi.org/10.1002/wcms.81.
7. Neese, F., Wennmohs, F., Becker, U. & Riplinger, C. (2020) The ORCA quantum chemistry program package, J. Chem. Phys., 152(22), 224108. DOI:https://doi.org/10.1063/5.0004608.
8. Neese, F. (2022) Software update: The ORCA program system - Version 5.0, Wiley Interdiscip. Rev. Comput. Mol. Sci., e1606. DOI:https://doi.org/10.1002/wcms.1606.
9. Perdew, J.P., Burke, K. & Ernzerhof, M. (1996) Generalized Gradient Approximation Made Simple, Phys. Rev. Lett., 77(18), pp. 3865-3868. DOI:https://doi.org/10.1103/PhysRevLett.77.3865.
10. Ernzerhof, M. & Scuseria, G.E. (1999) Assessment of the Perdew-Burke-Ernzerhof exchange-correlation functional, J. Chem. Phys., 110(11), pp. 5029-5036. DOI:https://doi.org/10.1063/1.478401.
11. Caldeweyher, E., Ehlert, S., Hansen, A., Neugebauer, H., Spicher, S., Bannwarth, C. & Grimme, S. (2019) A generally applicable atomic-charge dependent London dispersion correction, J. Chem. Phys., 150(15), 154122. DOI:https://doi.org/10.1063/1.5090222.
12. Caldeweyher, E., Mewes, J.-M., Ehlert, S. & Grimme, S. (2020) Extension and evaluation of the D4 London-dispersion model for periodic systems, Phys. Chem. Chem. Phys., 22(16), pp. 8499-8512. DOI:https://doi.org/10.1039/D0CP00502A.
13. Weigend, F. & Ahlrichs, R. (2005) Balanced basis sets of split valence, triple zeta valence and quadruple zeta valence quality for H to Rn: Design and assessment of accuracy, Phys. Chem. Chem. Phys., 7(18), pp. 3297-3305. DOI:https://doi.org/10.1039/B508541A.
14. Weigend, F. (2006) Accurate Coulomb-fitting basis sets for H to Rn, Phys. Chem. Chem. Phys., 8(9), pp. 1057 1065. DOI:https://doi.org/10.1039/B515623H.
15. Rappoport, D. & Furche, F. (2010) Property-optimized Gaussian basis sets for molecular response calculations, J. Chem. Phys., 133(13), 134105. DOI:https://doi.org/10.1063/1.3484283.
16. Kossmann, S. & Neese, F. (2010) Efficient Structure Optimization with Second-Order Many-Body Perturbation Theory: The RIJCOSX-MP2 Method, J. Chem Theory Comput., 6(8), pp. 2325-2338. DOI:https://doi.org/10.1021/ct100199k.
17. Hellweg, A., Hattig, C., Hofener, S. & Klopper, W. (2007) Optimized accurate auxiliary basis sets for RI-MP2 and RI-CC2 calculations for the atoms Rb to Rn, Theor. Chem. Acc., 117(4), pp. 587-597. DOI:https://doi.org/10.1007/s00214-007-0250-5.
18. Hellweg, A. & Rappoport, D. (2015) Development of new auxiliary basis functions of the Karlsruhe segmented contracted basis sets including diffuse basis functions (def2-SVPD, def2-TZVPPD, and def2-QVPPD) for RI MP2 and RI-CC calculations, Phys. Chem. Chem. Phys., 17(2), pp. 1010-1017. DOI:https://doi.org/10.1039/C4CP04286G.
19. Barone, V., Cossi, M. (1998) Quantum Calculation of Molecular Energies and Energy Gradients in Solution by a Conductor Solvent Model, J. Phys. Chem. A., 102(11), pp. 1995-2001. DOI:https://doi.org/10.1021/jp9716997.