аспирант
Ярославль, Ярославская область, Россия
студент
Ярославль, Ярославская область, Россия
сотрудник
Ярославль, Ярославская область, Россия
We have developed a simple method to produce amino derivatives of pyrido[1,2-a]benzimidazole. Also we proposed the possible ways of their further implementation. In addition, we studied the reac-tion patterns of the nitration of substituted pyrido[1,2-a]benzimidazoles.
1. Darwish, S.A.Z., Elbayaa, R.Y., Ashour, H.M.A., Khalil, M.A. & Badawey, E.A.M. (2018) Potential Anticancer Agents: Design, Synthesis of New Pyrido[1,2-a]benzimidazoles and Related Derivatives Linked to Alkylating Fragments, Med. Chem., 8, pp. 86-95. DOI:https://doi.org/10.4172/2161-0444.1000498.
2. Teng, Q.-H., Peng, X.-J., Mo, Z.-Y., Xu, Y.-L., Tang, H.-T., Wang, H.-S., Sun, H.-B. & Pan, Y.-M. (2018) Transition-Metal-Free C-N and C-C Formation: Synthesis of Benzo[4,5]imidazo[1,2-a]pyridines and 2-Pyridones From Ynones, Green Chem., 20, pp. 2007-2012. DOI:https://doi.org/10.1039/C8GC00069G.
3. Okombo, J., Brunschwig, C., Singh, K., Dziwornu, G.A., Barnard, L., Njoroge, M., Wittlin, S. & Chibale, K. (2019) Antimalarial Pyrido[1,2-a]benzimidazole Derivatives with Mannich Base Side Chains: Synthesis, Pharmacological Evaluation and Reactive Metabolite Trapping Studies, ACS Infect. Dis., 5, pp. 372–384. DOI:https://doi.org/10.1021/acsinfecdis.8b00279.
4. Korkor, C.M., Garnie, L.F., Amod, L., Egan, T.J. & Chibale, K. (2020) Intrinsic Fluorescence Properties of Antimalarial Pyrido[1,2-a]benzimidazoles Facilitate Subcellular Accumulation and Mechanistic Studies in the Human Malaria Parasite Plasmodium falciparum, Org. Biomol. Chem., 18, pp. 8668-8676. DOI:https://doi.org/10.1039/D0OB01730B.
5. Mayoka, G., Keiser, J., Häberli, C. & Chibale, K. (2019) Structure–Activity Relationship and in Vitro Absorp-tion, Distribution, Metabolism, Excretion, and Toxicity (ADMET) Studies of N-aryl 3-Trifluoromethyl Pyri-do[1,2-a]benzimidazoles That Are Efficacious in a Mouse Model of Schistosomiasis, ACS Infect. Dis., 5, pp. 418–429. DOI:https://doi.org/10.1021/acsinfecdis.8b00313.
6. Probst, A., Chisanga, K., Dziwornu, G.A., Haeberli, C., Keiser, J. & Chibale, K. (2021) Expanding the activity profile of pyrido[1,2-a]benzimidazoles: Synthesis and evaluation of novel N1-1-phenylethanamine derivatives against Schistosoma mansoni, ACS Infect. Dis., 7, pp. 1032–1043. DOI:https://doi.org/10.1021/acsinfecdis.0c00278.
7. Begunov, R.S., Zaitseva, Yu.V., Sokolov, A.A., Egorov, D.O. & Filimonov, S.I. (2022) Synthesis and antibacte-rial activity of 1,2,3,4-tetrahydro- and pyrido[1,2-a]benzimidazoles, Him.-farm. zhurn., 56(1), pp. 25-31. DOI:https://doi.org/10.1007/s11094-022-02596-0 (in Russian).
8. 8. Song, G., Liu, A., Jiang, H., Ji, R., Dong, J. & Ge, Y. (2019) A FRET-based ratiometric fluorescent probe for detection of intrinsically generated SO2 derivatives in Mitochondria, Analytica Chimica Acta, 1053, pp. 148 154. DOI:https://doi.org/10.1016/j.aca.2018.11.052.
9. Sagirli, A. (2020) A new approach for the synthesis of fluorescent pyrido[1,2-a]benzimidazoles, Synthetic commun., 50, pp. 3298-3307. DOI:https://doi.org/10.1080/00397911.2020.1800742.
10. Anderson, J.C., Chang, C.-H., Jathoul, A.P. & Syed, A.J. (2019) Synthesis and bioluminescence of electronically modified and rotationally restricted colour-shifting infraluciferin analogues, Tetrahedron, 75, pp. 347 356. DOI:https://doi.org/10.1016/j.tet.2018.11.061.
11. Weiwei, Zhang, Hui-Jing, Li, Meirong, Wang, Li-Juan, Wang, Ai-Han, Zhang & Yan-Chao, Wu. (2019) Highly effective inhibition of mild steel corrosion in HCl solution by using pyrido[1,2-a]benzimidazoles, New J. Chem., 43, pp. 413-426. DOI:https://doi.org/10.1039/c8nj04028a.
12. Rachinskaya, O.A., Popov, K.V., Ryzvanovich, G.A., Bolsheva, N.L., Begunov, R.S., Yurkevich, O.Yu., Zelenin, A.V. & Muravenko, O.V. (2012) Increase of resolution of chromosome analysis with pyrido[1,2-a]benzimidazoles, Genetika, 48(10), pp. 1228-1236. DOI:https://doi.org/10.1134/s1022795412100080 (in Russian).
13. Yang, Kai, Luo, Shi-He, Chen, Si-Hong, Cao, Xi-Ying, Zhou, Yong-Jun, Lin, Yan-Lan, Huo, Yan-Ping & Wang, Zhao-Yang (2021) Simple inorganic base promoted C–N and C–C formation: synthesis of ben-zo[4,5]imidazo[1,2-a]pyridines as functional AIEgens used for detecting picric acid, Org. Biomol. Chem., 19, pp. 8133-8139. DOI:https://doi.org/10.1039/D1OB01424B.
14. Leng, J., Xin, J., Zhou, H., Li, K., Hu, W. & Zhang, Y. (2021) Theoretical insights into sensing performances of rhodamine-contained two-photon fluorescent probes for mercury ion, Int. J. Quantum Chem., 121, e26435. DOI:https://doi.org/10.1002/qua.26435.
15. Ge, Y., Zheng, X., Ji, R., Shen, S. & Cao, X. (2017) A new pyrido[1,2-a]benzimidazole-rhodamine FRET system as an efficient ratiometric fluorescent probe for Cu2+ in living cells, Anal. Chim. Acta, 965, pp. 103-110. DOI:https://doi.org/10.1016/j.aca.2017.02.006.
16. Bodo, Lipke (1970) Zur Kenntnis von N-(Phenyl)-pyridiniumsalzen, Z. Chem., 10, pp. 463. DOI:https://doi.org/10.1002/zfch.19700101207.
17. Begunov, R.S., Sokolov, A.A. & Shebunina, T.V. (2013) Influence of nature of reducing agent on N(2-nitrophenyl)pyridinium chloride reduction, Zhurnal organicheskoj khimii, 49(5), pp. 789-791. DOI:https://doi.org/10.1134/S1070428013050291 (in Russian).
18. Begunov, R.S. & Sokolov, A.A. (2014) Reaction of reductive intramolecular heterocyclization of N-(2-nitroaryl)pyridinium chlorides by metal salts of variable valence, Zhurnal organicheskoj khimii, 50(8), pp. 1234-1236. DOI:https://doi.org/10.1134/S1070428014080296 (in Russian).
19. Begunov, R.S., Sokolov, A.A. & Sazhina, A.A. (2015) Influence of temperature and nature of protonating agent on N-(2-nitroaryl)pyridinium chloride reduction, Zhurnal organicheskoj khimii, 50(8), pp. 1215-1217. DOI:https://doi.org/10.1134/S1070428015080266 (in Russian).
20. Begunov, R.S. & Sokolov, A.A. (2022) One-pot reduction and halogenation of n-(2,4-dinitrophenyl)piperidine, From Chemistry Towards Technology Step-By-Step, 3(2), pp. 30-36 [online]. Available at: http://chemintech.ru/index.php/tor/2022tom3no2. DOI:https://doi.org/10.52957/27821900_2022_02_30 (in Russian).