DEVELOPMENT AND SYNTHESIS OF AMINO ACID DERIVATIVES OF N-METHYL ANALOGUE OF PROCAINE AND BENZOCAINE BASED ON PHARMACOPHORE FUSION STRATEGY
Аннотация и ключевые слова
Аннотация (русский):
We have developed a rational method for the synthesis of amino acid derivatives of N-methyl analogue of procaine and benzocaine using N,N-carbonyl diimidazole method in solutions. Using the PASS software package, we predicted the biological activity of a series of hybrid compounds produced by the fusion of aminoether and aminoanilide anaesthetics. All hybrid compounds have a potential lack of significant hepatotoxicity with an increased median lethal dose for both intraperitoneal and subcutaneous injection routes when the pharmocophor is fused. The synthesised compounds are of interest as potential therapeutic agents with local anaesthetic activity and low toxicity.

Ключевые слова:
benzocaine, Boc-α-amino acids, N,N-carbonyldiimidazole, 4-aminobenzoic acid, local anaesthetics
Список литературы

1. Vardanyan, R. & Hrybu, V. (2016) Synthesis of Best-Seller Drugs. Chapter 2. Local Anesthetics. Academic Press. DOI:https://doi.org/10.1016/C2012-0-07004-4.

2. Becker, D.E. & Reed, K.L. (2012) Local Anesthetics: Review of Pharmacological Considerations, Anesth. Prog., 59, pp. 90-102. DOI:https://doi.org/10.2344/0003-3006-59.2.90.

3. Ruetsch, Y.A., Bönibc, T. & Borgeat, A. (2001) From Cocaine to Ropivacaine: The History of Local Anesthetic Drugs, Curr. Top. Med. Chem., 1, pp. 175-182. DOI:https://doi.org/10.2174/1568026013395335.

4. Bezerra, M.M., Leão, R.A.C., Miranda, L.S.M. & De Souza, R.O.M. (2020) A Brief History Behind the Most Used Local Anesthetic, Tetrahedron, 76(47), 131628. DOI:https://doi.org/10.1016/j.tet.2020.131628.

5. Kalinin, D.V., Pantsurkin, V.I., Syropyatov, S.Y. et al. (2013) Synthesis, local anaesthetic and antiarrhythmic activities of N-alkyl derivatives of proline anilides, Eur. J. Med. Chem., 63, pp. 144-150. DOI:https://doi.org/10.1016/j.ejmech.2013.02.003.

6. Yang, Y., Li, L., You, Z. & Zhang, X. (2021) A convenient and highly enantioselective synthesis of (S)-2-pipecolic acid: an efficient access to caine anesthetics, Sunth. Commun., 51(20), pp. 3084-3089. DOI:https://doi.org/10.1080/00397911.2021.1961155.

7. Costa, J.C.S, Neves, J.S. et al. (2008) Synthesis and antispasmodic activity of lidocaine derivatives endowed with reduced local anesthetic action, Bioorg. Med. Chem. Lett., 18, pp. 1162-1166. DOI:https://doi.org/10.1016/j.bmcl.2007.11.122.

8. Ermokhin, V.A., Purygin, P.P. & Zarubin, Y.P. (2006) Adamantan derivatives of 4-aminobenzoic acid esteroviamides, Vestnik SamGU. Estestvennonauchnaya seriya, 9, pp. 92-96 (in Russian).

9. Dzhamanbaev, J.A., Abdurashitova, Y.A., Sarymzakova, R.K. & Eralieva, M.G. (2019) Synthesis of carbohydrate derivatives of p-aminobenzoic acid, Uspekhi Sovremennogo estestvoznaniya, 3, pp. 127-132 (in Russian).

10. Ahirwar, J., Ahirwar, D., Lanjhiyana, S. et al. (2018) Analgesic and Anti-inflammatory Potential of Merged Pharmacophore Containing 1,2,4-triazoles and Substituted Benzyl Groups via Thio Linkage, J. Heterocyclic Chem., 49(4), pp. 726-731. DOIhttps://doi.org/10.1002/jhet.3258.

11. Zhang, M., Wie, W. et al. (2021) Discovery of novel pyrazolopyrimidine derivatives as potent TOR/HDAC bi-functional inhibitors via pharmacophore-merging strategy, Bioorg. Med. Chem. Lett., 49, 128286. DOI:https://doi.org/10.1016/j.bmcl.2021.128286.

12. Chen, L., Geng, H. et al. (2021) Rapid entry to bispiro heterocycles merging five pharmacophores using phase-transfer catalysis, Tetrahedron Lett., 78, 153276. DOI:https://doi.org/10.1016/j.tetlet.2021.15327.

13. Yanagimoto, T., Kishimoto, S., Kasai Y. et al. (2020) Design and synthesis of dual active neovibsanin derivatives based on a chemical structure merging method, Bioorg. Med. Chem. Lett., 30(20). 127497. DOI:https://doi.org/10.1016/j.bmcl.2020.127497.

14. Xu, Q., Hu, M., Li, J. et al. (2022) Discovery of novel brain-penetrant GluN2B NMDAR antagonists via pharmacophore-merging strategy as anti-stroke therapeutic agents, Europ. Med. Chem., 227, 113876. DOI:https://doi.org/10.1016/j.ejmech.2021.113876.

15. Druzhilovskiy, D.S., Rudik, A.V., Filimonov, D.A. et al. (2017) Computational platform Way2Drug: from the prediction of biological activity to drug repurposing, Rus. Chem. Bull. Inter. Ed., 66(10), pp. 1832-1841. DOI:https://doi.org/10.1007/s11172-017-1954-x.

16. Lagunin, A., Zakharov, A., Filimonov, D. & Poroikov, V. (2011) QSAR Modelling of Rat Acute Toxicity on the Basis of PASS Prediction, Mol. Inf., 30, pp. 241-250. DOI:https://doi.org/10.1002/minf.201000151

17. Ivanov, S.M., Lagunin, A.A., Rudik , A.A., Filimonov, D.M. et al. (2017) ADVERPred – web service for prediction of adverse effects of drugs, J. Chem. Inf. Model. DOI:https://doi.org/10.1021/acs.jcim.7b00568.

18. Lagunin, A., Filimonov, D. & Poroikov, V. (2010) Multi-Targeted Natural Products Evaluation Based on Biological Activity Prediction with PASS, Current Pharmaceutical Design., 16(15), pp. 1703-1717. DOI:https://doi.org/10.2174/138161210791164063.

19. Filimonov, D.A., Lagunin, A.A., Gloriozova, T.A., Rudik, A.V. et al. (2014) Prediction of the biological activity spectra of organic compounds using the pass online web resource, Chem. Heter. Compouds, 50(3), pp. 444-457. DOIhttps://doi.org/10.1007/s10593-014-1496-1.

20. Spiridonova, A.V., Uvarovskaya, P.A., Krasnikova, N.V., Krasnikov, S.V. & Rozaeva, E.E. (2021) Short N-acyldipeptides with adamantylbenzoyl fragment with potential antiviral activity, From Chemistry Towards Technology Step-By-Step, 2(2), pp. 60-68. DOI:https://doi.org/10.52957/27821900_2021_02_60 [online]. Available at: http://chemintech.ru/index.php/tor/2021-2-2.

21. Khairutdinov, F.G., Akhtyamova, Z.G., Golovin, V.V., Knyazev, A.V., Gafarov, A.N., Gilmanov, R.Z. & Sobachkina, T.N. (2014) Synthesis of pharmaceutical substances: Study Guide. Kazan': Izd-vo KNITU (in Russian).

Войти или Создать
* Забыли пароль?