Influence of the nature of N-alkylation of glycolurils on their solvation structural effects in H/D-isotopologues of water based on the results of thermodynamic study of solutions
Аннотация и ключевые слова
Аннотация (русский):
This review is based on the analysis of data on the structural and thermodynamic properties of tetra-N-alkyl-substituted bicyclic bis-urea of the octane series (glycolurils), singly and dissolved in H2O and D2O, obtained by other authors. The paper discusses issues of the influence of the stereochemical nature of these bioactive compounds on their hydration processes. The researched substances are the low-toxic glycolurils with pharmacologically pronounced psychotropic effects, known under the commercial names Mebicar (tetra-N-methylanalog), Bicaret (tetra-N-ethylanalog), and the cis- and trans-N-diethyl-dimethyl-analogs, Mebicaret and Albicar. The last listed glycoluril, which is chiral in stereochemical nature, was investigated as racemate. The study also included the analysis of the available results of calorimetric, densitometric, and spectroscopic (for Mebicar) studies of glycolurils solutions in H/D isotopologues of water as well as quantum-chemical calculations of molecular parameters of these heterocyclic compounds in the ideal gas phase. It has been shown that the hydration of each of the studied tetra-N-alkyl-substituted glycolurils can be generally regarded as a superposition of two mechanisms – hydrophobic and hydrophilic. In the case of Bicaret, the former is dominant, while for Mebicar the latter obviously predominates. Regarding to the structural state and solvation in aqueous medium of glycolurils with mixed N-alkyl-substitution such as Albicar and Mebicaret, the stereochemical nature of their molecules predetermines a kind of "thermodynamic balance (dualism)" between the mentioned mechanisms. The paper outlines the distinctive features of the hydration process of racemic Albicar against the effects of intermolecular interaction in aqueous solution of achiral Mebicaret.

Ключевые слова:
tetra-N-alkyl-substituted glycoluriles; H/D water isotopologues; standard molar volumes and dissolution enthalpies; solvent isotope effects; molecular parameters; hydrophilic and hydrophobic hydration
Текст
Текст произведения (PDF): Читать Скачать
Список литературы

1. Pletnev V.Z., Mikhailova I.Yu., Sobolev A.N., Galitskii N.M., Verenich A.I., Khmelnitskii L.I., Lebedev O.V., Kravchenko A.N., Suvorova L.I. Spatial structure of psychotropic-active compounds of a number of N-polyalkyl derivatives of 2,4,6,8-tetraazabicyclo[3.3.0] octanedione-3.7 in the crystal according to X-ray diffraction analysis. Bioorg. khimiya. 1993. V. 19. N 6. P. 671-681 (in Russian).

2. Kravchenko A.N., Sigachev A.S., Maksareva E.Yu., Gazieva G.A., Trunova N.S., Lozhkin B.V., Pivina T.S., Iliin M.M., Nelyubina Yu.V., Davankov V.A., Lebedev O.V., Makhova N.N., Tartakovskii V.A.. Synthesis of novel chiral mono-, di-, tri- and tetra glycolurils. Izv. Akad. nauk. Ser. khim. 2005. N 3. P. 1680-1692 (in Russian).

3. Vikharev Yu.B., Anikina L.V., Chikunov I.E., Sigachev A.S., Kravchenko A.N., Shklyaev Yu.V., Makhova N.N. Neuroprotective properties of N-functionally substituted glycolurils. Voprosy biol. med. farm. khimii. 2006. N 2. P. 12-16 (in Russian).

4. Ivanov E.V., Abrosimov V.K. Solvent isotope effects in the thermodynamics of hydration of cyclic urea derivatives. Khimiya rastvorov biologicheski aktivnykh veshchestv. Ser. "Problemy khimii rastvorov". Ivanovo: EID. 2016. P. 17-92 (in Russian).

5. Kravchenko A.N., Baranov V.V., Gazieva G.A. Synthesis of glycolurils and their analogues. Uspekhi khimii. 2018. V. 87. N 1. P. 89-108 (in Russian).

6. Panshina S.Yu., Ponomarenko O.V., Bakibaev A.A., Malkov V.S., Kotelnikov O.A., Tashenov A.K. Study of glycoluril and its derivatives by 1H and 13C NMR spectroscopy. Bull. Karaganda Univ. Chem. Ser. 2020. V. 99. N 3. P. 21-37. DOI:https://doi.org/10.31489/2020Ch3/21-37.

7. Valdman A.V., Zaikonnikova I.V., Kozlovskaya M.M., Zimakova I.E. Study of specifics of the spectrum of psychotropic activity of mebicar. Byulleten eksperim. biol. med. 1980. V. 89. N 5. P. 568-570 (in Russian).

8. Ryzhkina I.S., Kiseleva, Yu.V., Mishina O.A. Timosheva A.P., SergeevaS.Yu., Kravchenko A.N., Konovalov A.I. Correlations between the self-organization, physicochemical properties, and biological activity of Mebicar in dilute aqueous solutions. Mendeleev Commun. 2013. V. 23. N 5. Р. 262-264. DOI:https://doi.org/10.1016/j.mencom.2013.09.008.

9. Ivanov E.V., Batov D.V. Enthalpy-related parameters of interaction of simplest α-amino acids with the pharmaceutical mebicar (N-tetramethylglycoluril) in water at 298.15 K. J. Chem. Thermodyn. 2019. V. 128 P. 159-163. DOI:https://doi.org/10.1016/j.jct.2018.08.022.

10. Ivanov E.V., LebedevaE.Yu. Effect of temperature on volumetric behavior of glycine in aqueous mebicar (N-tetramethylglycoluril) at p~0.1 MPa. J. Mol. Liq. 2017. V. 242. P. 235-243. DOI:https://doi.org/10.1016/j.molliq.2017.07.015.

11. Mashkovskii, M.D. Drugs. 16 ed. Moscow: Novaya volna, 2020. 1216 p. (in Russian).

12. Ivanov E.V., LebedevaE.Yu. Interaction-related volumetric and some other properties of urea solutions in aqueous N-tetramethylglycoluril (the mebicar drug) at different temperatures and under the ambient pressure. J. Mol. Liq. 2021. V. 331. P. 11512/1-115812/9. DOI:https://doi.org/10.1016/j.molliq.2021.115812.

13. Kostyanovsky R.G., Kadorkina G.K., Lyssenko K.A., TorbeevV.Yu., Kravchenko A.N., Lebedev O.V., Grintselev-Knyazev G.V., Kostyanovsky V.R. Chiral drugs viathe spontaneous resolution. Mendeleev Commun. 2002. V. 12. N 1. P. 6-8. DOI:https://doi.org/10.1070/MC2002v012n01ABEH001521

14. Prokopov A.A., Kostebelov N.V., Berlyand A.A. Experimental pharmacokinetics of albicar. Khim.-farm. zhurn. 2002. N 3. P. 13-16 (in Russian).

15. Lenev D.A., Lyssenko K.A., Kostyanovsky R.G. The chiral drug Albicar: resolution of its racemate via complexation with BINOL. New J. Chem. 2010. V. 34. N 3. P. 403-404. DOI:https://doi.org/10.1039/b9nj00701f.

16. Berlyand A.S, Lebedev O.V., Prokopov A.A. Chemical-pharmaceutical analysis of the biologically active substance albicar. Khim.-farm. zhurn. 2013. V. 47. N 3. P. 52-54 (in Russian).

17. Anikina L.V., VikharevYu.B., Baranov V.V., Malyshev O.R., Kravchenko A.N. Preparative synthesis and pharmacological activity of Albicar racemate and enantiomers. Mendeleev Commun. 2018. V. 28. N 3. P. 317-319. DOI: 10.1016/ j.mencom.2018.05.030.

18. Ivanov E.V., Batov D.V., Baranov V.V., Kravchenko A.N. Temperature-dependent thermochemical properties of the Mebicaret (2,4-dimethyl-6,8-diethylglycoluril) solutions in H2O and D2O at the ambient pressure. Thermochim. Acta. 2016. V. 627. P. 48-54. DOI:https://doi.org/10.1016/j.tca.2016.01.010.

19. Ivanov E.V., LebedevaE.Yu., Petrovskaya S.G., Baranov V.V., Kravchenko A.N., Ivanova N.G. Volume-related interaction parameters for dilute solutions of Mebicaret (2,4-dimethyl-6,8-diethylglycoluril) in normal and heavy water between 278.15 K and 318.15 K. J. Mol. Liq. 2017. V. 242. P. 160-167. DOI:https://doi.org/10.1016/j.molliq.2017.07.003.

20. Prokopov A.A., Berlyand A.S., Kazantseva O.N. A study of bicaret metabolism. Khim.-farm. zhurn. 2002. V. 36. N 10. P. 5-6 (in Russian).

21. Prokopov A.A., Berlyand A.S., Kazantseva O.N. A study of the experimental pharmacokinetics of bicarb. Khim.-farm. zhurn. 2003. V. 37. N 3. P. 25-28 (in Russian).

22. Chegaev K.Yu., Kravchenko А.N., Lebedev О.V., Strelenko Yu.A. New functional glycoluril derivatives. Mendeleev Commun. 2001. V. 11. N 1. P. 32-33. DOI: 10.1070/ MC2001v011n01ABEH00135.

23. Sanders M.P.A., Barbosa A.J.M., Zarzycka B., Nicolaes G.A.F., Klomp J.P.G., de Vlieg J., Del Rio A. Comparative analysis of pharmacophore screening tools. J. Chem. Inf. Model. 2012. V. 52. N 6. P. 1607-1620. DOI:https://doi.org/10.1021/ci2005274.

24. Katzung B.G., Vanderah T.W. Basic & Clinical Pharmacology. 15th ed. New York: McGraw Hill Professional, 2018. 1310 p.

25. Khurgin Yu.I., Lebedev O.V., Maksareva E.Yu., Zavizion V.A., Kudryashova V.A., Vorobiev M.M., Orekhova G.A., Danilenko A.N. Intermolecular interactions in aqueous solutions of mebicar. Izv. Akad. nauk. Ser. khim. 1995. N 6. P. 1178-1179 (in Russian).

26. Ewing M.B, Lilley T.H., Olofsson G.M., Ratzsch M.T., Somsen G. Standard quantities in chemical thermodynamics. Fugacities, activities and equilibrium constants for pure and mixed phases (IUPAC Recommendations 1994). Pure Appl. Chem. 1994. V. 66. N 3. P. 533-552. DOI:https://doi.org/10.1351/pac199466030533.

27. Ivanov E.V. Thermodynamic interrelation between excess limiting partial molar characteristics of a liquid nonelectrolyte. J. Chem. Thermodyn. 2012. V. 47. P. 437-440. DOI:https://doi.org/10.1016/j.jct.2011.11.018.

28. Kustov A.V. Hydrophobic effects: Structural, thermodynamic, applied aspects. Achievements of recent years. Moscow: Krasand, 2013. 224 p. (in Russian).

29. Wilhelm E. Chemical thermodynamics: A journey of many vistas. J. Solution Chem. 2014. V. 43. N 3. P. 525-576. DOI:https://doi.org/10.1007/s10953-014-0140-0.

30. Ben-Naim A. Solvation Thermodynamics. New York: Springer, 1987. 246 p. DOI:https://doi.org/10.1007/978-1-4757-6550-2.

31. Rabinovich I.B. Influence of isotopy on the physico-chemical properties of liquids. Moscow: Nauka, 1968. 308 p. (in Russian).

32. Lobyshev V.I., Kalinichenko L.P. Isotopic effects of D2O in biological systems. Moscow: Nauka, 1978. 216 p. (in Russian).

33. Engdahl A., Nelander B. On the relative stabilities of H- and D-bonded water dimmers. J. Chem. Phys. 1987. V. 86. N 4. P. 1819-1823. DOI:https://doi.org/10.1063/1.452182.

34. Abrosimov V.K., Ivanov E.V. Water in non-aqueous solvents: state and solvation. Voda: Struktura, sostoyanie, sol'vatatsiya. Dostizheniyaposlednikh let. Ser. "Problemykhimiirastvorov". Moscow: Nauka, 2003. P. 277-346 (in Russian).

35. Soper A.K., Benmore C.J. Quantum differences between heavy and light water. Phys. Rev. Lett. 2008. V. 101. N 6. N 065502/1-065502/4. DOI: 10.1103/ PhysRevLett.101.065502.

36. Ivanov E.V., Ivanova N.G. State and solvation of H/D-isotopes of water in aprotonic dipolar organic media by thermochemical studies. Ot khimii k tekhnologii. Shag za shagom. 2021. V. 2. N 1. P. 42-62. URL: https://drive.google.com/file/d/17wkupCzIUSz5SoxK58Ux7OgZY7sfhj-I/view (in Russian).

37. Grillon E., Gallo R., Pierrot M., Boileau J., Wimmer E. Isolation and X-ray structure of the intermediate dihydroxyimidazolidine (DHI) in the synthesis of glycoluril from glyoxal and urea. Tetrahedron Lett. 1988. V. 29. N 9. P. 1015-1016. DOI: 10.1016/ 0040–4039(88)85322-X.

38. Atavin E.G., Golubinskii A.V., Kravchenko A.N., Lebedev O.V., Vilkov L.V. An electronographic study of the structure of the mebicar molecule. Zhurn. strukturnoi khimii. 2005. V. 46. N 3. P. 430-434 (in Russian).

39. Abrosimov V.K., Krasnov A.V., Zhabanov Yu.A., Ivanov E.V. Molecular structure and sublimation enthalpy of 2,4,6,8-tetramethylglycoluril, a drug Mebicar. Izv. vuzov. Khimiya i khim. tekhnologiya. 2015. V. 58. N 1. P. 3-5 (in Russian).

40. Rezaei-Seresht E., Tayebee R. Synthesis of glycoluril derivatives catalyzed by some heteropolyoxometalates. J. Chem. Pharm. Res. 2011. V. 3. N 1. P. 103-107.

41. Dunning T.H., Jr. Gaussian basis sets for use in correlated molecular calculations. I. The atoms boron through neon and hydrogen. J. Chem. Phys. 1989. V. 90. N 2. P. 1007-1023. DOI:https://doi.org/10.1063/1.456153.

42. Abrosimov V.K., Zhabanov Yu.A., Krasnov A.V., Ivanov E.V. Molecular structure of methyl-N-substituted chiral glycoluriles by quantum chemical DFT calculations. Izv. vuzov. Khimiya i khim. tekhnologiya. 2015. V. 58. N 8. P. 29-32 (in Russian).

43. Muller P. Glossary of terms used in physical organic chemistry (IUPAC Recommendations 1994). Pure Appl. Chem. 1994. V. 66. N 5. P. 1077-1184. DOI:https://doi.org/10.1351/pac199466051077.

44. Zatsepina G.N. Physical properties and structure of water. Moscow: Izdatelstvo MGU, 1987. 171 p. (in Russian).

45. Machida M., Kato K., Shiga M. Nuclear quantum effects of light and heavy water studied by all-electron first principles path integral simulations. J. Chem. Phys. 2018. V. 148. N 10. P. 102324/1-102324/11. DOI:https://doi.org/10.1063/1.5000091.

46. Berger A., Ciardi G., Sidler D., Hamm P., Shalit A. Impact of nuclear quantum effects on the structural inhomogeneity of liquid water. PNAS USA. 2019. V. 116. N 7. DOI:https://doi.org/10.1073/pnas.1818182116.

47. Belousov V.P., PanovM.Yu. Thermodynamics of aqueous solutions of non-electrolytes. Leningrad: Khimiya, 1983. 265 p. (in Russian).

48. Krestov G.A., Korolev V.P., Batov D.V. Differential substitution of protium by deuterium on solvent properties. Dokl. Akad. nauk SSSR. 1987. V. 293. N 4. P. 882-884 (in Russian).

49. Swain C.G., Bader R.F.W. The nature of the structure difference between light and heavy water and the origin of the solvent isotope effect−I. Tetrahedron. 1960. V. 10. N 3-4. P. 182-199. DOI:https://doi.org/10.1016/S0040-4020(01)97806-8.

50. Ivanov E.V., Lebedeva E.Yu., Abrosimov V.K., Ivanova N.G. Structural contribution of the hydrophobic hydration effect of noble gases. Zhurn. strukturnoi khimii. 2005. V. 46. N 2. P. 262-272 (in Russian).

51. Khurgin Yu.I., Kudryashova V.A., Zavizion V.A. Investigation of intermolecular interactions by millimeter spectroscopy. Negative and positive hydration in aqueous urea solutions. Izv. akad. nauk SSSR. Ser. khim. 1990. N 2. P. 314-320 (in Russian).

52. Ivanov E.V., Abrosimov V.K., Batov D.V. Effect of temperature on H/D isotope effects in the hydration enthalpy of tetramethyl-bis-carbamide. Izv. Akad. nauk. Ser. khim. 2006. N 4. P. 715-717 (in Russian).

53. Korolev V.P., Kustov A.V., Batov D.V., Smirnova N.L., Lebedev Yu.A. Effects of hydrophilic and hydrophobic hydration groups of tetramethylbisurea and N,N'-dimethylpropyleneurea in solutions. Biofizika. 2008. V. 53. N 4. P. 544-549 (in Russian).

54. Ivanov E.V., Batov D.V., Gazieva G.A., Kravchenko A.N., Abrosimov V.K. D2O‒H2O solvent isotope effects on the enthalpies of bicaret hydration and dilution of its aqueous solutions at different temperatures. Thermochim. Acta. 2014. V. 590. N 1-2. P. 145-150. DOI:https://doi.org/10.1016/j.tca.2014.05.011.

55. Ivanov E.V., Batov D.V., Kravchenko A.N. (D2O–H2O) solvent isotope effects on some thermodynamic properties of the Albicar dissolution (hydration) between T = (278.15 and 313.15) K at ambient pressure. J. Chem. Thermodyn. 2016. V. 97. P. 341-347. DOI:https://doi.org/10.1016/j.jct.2016.02.012.

56. Kustov A.V., Batov D.V., Usacheva T.R. Calorimetry of non-electrolyte solutions: theoretical framework, experiment, data analysis. Moscow: Krasand, 2016. P. 32-36 (288 p.) (in Russian).

57. Nakamura M., Tamura К., Murakami S. Isotope effects on thermodynamic properties: mixtures of x(D2O or H2O) + (1‒x)CH3CN at 298.15 K. Thermochim. Acta. 1995. V. 253. P. 127-136. DOI:https://doi.org/10.1016/0040-6031(94)02086-4.

58. Jelinska-Kazimierczuk M., Szydlowski J. Physicochemical properties of solutions of amides in H2O and in D2O. J. Solution Chem. 2001. V. 30. N 7. P. 623-640. DOI:https://doi.org/10.1023/A:1010454929640.

59. Phillip P.R., Perron G., Desnoyers J.E. Apparent molal volumes and heat capacities of urea and methyl-substituted ureas in H2O and D2O at 25°C. Can. J. Chem. 1974. V. 52. N 9. P. 1709-1713. DOI:https://doi.org/10.1139/v74-246.

60. Abrosimov V.K., Chumakova R.V. Thermodynamics of aqueous carbohydrate solutions: Mono- and disaccharides. Biologically active substances in solutions: Structure, thermodynamics, reactivity. Ser. "Problemy khimii rastvorov". Moscow: Nauka, 2001. P. 47-109 (in Russian).

61. Abrosimov V.K., Ivanov E.V., Batov D.V. Transfer enthalpies of Mebicar from water to aqueous solutions of urea and its methylsubstituted derivatives at 298.15 K. Zhurn. fiz. khimii. 2006. V. 80. N. 11. P. 2016-2019 (in Russian).

62. Abrosimov V.K., Ivanov E.V., Batov D.D. Intermolecular interactions in aqueous solutions of methyl derivatives of urea. Dokl. Akad. nauk. 2006. V. 407. N 6. P. 785-788 (in Russian).

63. Ivanov E.V., Batov D.V. Enthalpy-related interaction parameters in H/D isotopically distinguishable aqueous solutions of tetramethylurea cyclic derivatives at 298.15 K. Thermochim. Acta. 2011. V. 523. N 1-2. P. 253 257. DOI:https://doi.org/10.1016/j.tca.2011.05.019.

64. Ivanov E.V., Batov D.V. Effect of the H/D solvent isotope substitution on enthalpy-related interaction parameters in aqueous solutions of the racemic Albicar at T = 298.15 K and ambient pressure. J. Chem. Thermodyn. 2016. V. 102. P. 9-11. DOI: 10.1016/ j.jct.2016.06.020.

65. Franks F., Pedley M., Reid D.S. Solute interactions in dilute aqueous solutions: part 1 – microcalorimetric study of the hydrophobic interaction. J. Chem. Soc. Faraday Trans. 1. 1976. V. 72. N 2. P. 359-367. DOI:https://doi.org/10.1039/F19767200359.

66. Barone G., Cacace P., Castronuovo G., Elia V. Interactions in aqueous solutions of urea-like compounds: heats of mixing of urea, monomethylurea and thiourea at 298.15 K. J. Chem. Soc. Faraday Trans. 1. 1981. V. 77. N 7. P. 1569-1577. DOI: 10.1039/ F19817701569.

67. Ivanov E.V., Abrosimov V.K. D2O‒H2O Solvent isotope effects on the apparent molar volumes of tetramethyl-bis-urea (Mebicarum) solutions. J. Solution Chem. 2007. V. 36. N 3. P. 313-325. DOI:https://doi.org/10.1007/s10953-006-9118-x.

68. Ivanov E.V., LebedevaE.Yu., Abrosimov V.K. Volumetric properties of Bicaret (tetra-N-ethylglycoluril) solutions in ordinary and heavy water at temperatures from (278.15 to 318.15) K and ambient pressure. J. Chem. Eng. Data. 2015. V. 60. N 7. P. 2079-2089. DOI:https://doi.org/10.1021/acs.jced.5b00154.

69. Ivanov E.V., Lebedeva E.Yu., Kravchenko A.N. Standard volumetric properties of a chiral pharmaceutical Albicar in water H/D isotopologues in the temperature range from (278.15 to 318.15) K and at ambient pressure. J. Chem. Thermodyn. 2017. V. 115. P. 148-155. DOI:https://doi.org/10.1016/j.jct.2017.07.034.

70. Wüzburger S., Sartorio R., Guarino G., Nisi M. Volumetric properties of aqueous solutions of polyols between 0.5 and 25°C. J. Chem. Soc. Faraday Trans. 1. 1988. V. 81. N 7. 2279-2287. DOI:https://doi.org/10.1039/F19888402279.

71. Abrosimov V.K., Ivanov E.V. Densimetry of solutions. Teoreticheskiye i eksperimentalnyye metody khimii rastvorov. Ser. "Problemy khimii rastvorov". Moscow: Prospekt, 2011. P. 425-463 (in Russian).

72. Fitzgerald D. Technical Assessment of the Anton Paar DMA 5000 Density Meter. Wales (UK): L&D Fitzgerald Ltd. 2000. P. 2–8. URL: https://density.co.uk.

73. Lepori L., Gianni P. Partial molar volumes of ionic and nonionic organic solutes in water: A simple additivity scheme based on the intrinsic volume approach. J. Solution Chem. 2000. V. 29. N 5. P. 405-447. DOI:https://doi.org/10.1023/A:1005150616038.

74. Kuzmin V.S., Katser S.B. Calculation of van der Waals volumes of organic molecules. Izv. Akad. nauk. Ser. khim. 1992. N 4. P. 922-931 (in Russian).

Войти или Создать
* Забыли пароль?