Ярославль, Ярославская область, Россия
Ярославль, Ярославская область, Россия
Ярославль, Ярославская область, Россия
Ярославль, Ярославская область, Россия
УДК 546.723 Трехвалентное железо
It was found that for K-β"Fe2O3 the maximum probability of realization of the active centers representing a cluster consisting of potassium ions, iron 3+ and 2+, and oxygen. The ability to self-reproduction and self-regulation in the reaction medium is an integral attribute of K-β"Fe2O3 as the main catalytically active component. This type of catalyst can be called a "catalyst with a permanently migrating promoter". Polyferrite serves as a conductor of the alkaline promoter. The monoferrite concentrated in the depth of the catalyst granules, for example, on the inner surface of closed pores can be a source of potassium. Polyferrites are solid electrolytes with a cationic type of conductivity and provide not only the delivery of the promoter to a required location through channels embedded in the crystal structure, but also its regular placement in the composition of active clusters. K-β"Fe2O3 is able to place the alloying additives in its structure. Only in this case, extremely small amounts of injected agent can greatly change the properties of the system. The rearrangement is not chaotic, if the K-β"Fe2O3 surface is chemically dispersed in the reaction medium to form a catalytically active short-lived substance - a nanoheterogeneous mixture of monoferrite and magnetite.
potassium polyferrite, hematite, promoted iron oxide catalyst, ferrite system, phase diagram
1. Weiss W., Zscherpel D., Schlogl R. On the Nature of the Active Site for the Ethylbenzene Dehydrogenation Over Iron Oxide Catalysts. Catalysis Letters. 1998. Vol. 52. N 3-4. P. 215-220. URL: https://doi.org/10.1023/A:1019052310644
2. Weiss W., Schlögl R. An Integrated Surface Science Approach Towards Metal Oxide Catalysis. Topics in Catalysis. 2000. Vol. 13. N 1-2. P. 75-90.
3. Shaikhutdinov Sh.K., Weiss W., Schlogl R. Interaction of potassium with Fe3O4 (111) at elevated temperatures. Applied Surface Science. 2000. Vol. 161. N 3-4. P 497-507. DOI:https://doi.org/10.1016/S0169-4332(00)00373-1
4. Shekhah O., Ranke W., Schlögl R. Styrene synthesis: In-situ characterization and reactivity studies of unpromoted and potassium promoted iron oxide model catalysts. Journal Catalysis. 2004. Vol. 225. N 1. P. 56-68. DOI:https://doi.org/10.1016/j.jcat.2004.03.024
5. Garry R., Meima P., Menon G. Catalyst Deactivation Phenomena in Styrene Production // Applied Catalysis A: General. 2001. Vol. 212. P. 239-245. URL: https://ru.scribd.com/document/342010350/Catalyst-Deactivation-Phenomena-in-Styrene
6. Muhler M., Schütze J., Wesemann M., Rayment T., Dent A., Schlögl R., Ertl G. The Nature of the Iron Oxide-Based Catalyst for Dehydrogenation of Ethylbenzene to Styrene: I. Solid-State Chemistry and Bulk Characterization. Journal of Catalysis. 1990. Vol. 126. N 2. P. 339-360. URL: https://doi.org/10.1016/0021-9517(90)90003-3
7. Muhler M., Schlögl R., Ertl G. The Nature of the Iron Oxide-Based Catalyst for Dehydrogenation of Ethylbenzene to Styrene 2. Surface Chemistry of the Active Phase. Journal of Catalysis. 1992. Vol. 138. N 2. P. 413-444. URL: https://doi.org/10.1016/0021-9517(92)90295-S
8. Lundin J., Holmlid L., Menon P.G., Nyborg L. Surface Composition of Iron Oxide Catalysts Used for Styrene Production: An Auger Electron Spectroscopy/Scanning Electron Microscopy Study. Ind. Eng. Chem. Res. 1993. Vol. 32. N 11. P. 2500-2505. DOI:https://doi.org/10.1021/ie00023a010
9. Muhler M., Schlögl R., Reller A., Ertl G. The Nature of the Active Phase of the Fe/K-Catalyst for Dehydrogenation of Ethylbenzene. Catalysis Letters. 1989. Vol. 2. N 4. P. 201-210. DOI:https://doi.org/10.1007/BF00766208
10. Muhler M., Schlögl R., Ertl G. Analysis of In Situ Prepared Surfaces of an Iron Oxide Based Dehydrogenation Catalyst. Surface and Interface Analysis. 1988. Vol. 12. N 4. P. 233-238. DOI:https://doi.org/10.1002/sia.740120402
11. Shekhah O., Schüle A., Kolios G., Huang W.X., Ranke W. Iron Oxide Based Model Catalysts – Adsorption and Catalysis. 13th Meeting of the Fachbeirat. Berlin, 2005. P. AC 1.2 URL: http://w0.rz-berlin.mpg.de/fbr2005/posterabstracts2005.pdf
12. Joseph Y, Ketteler G., Kuhrs C., Ranke W., Weiss W., Schlögl R. On the Preparation and Composition of Potassium Promoted Iron Oxide Model Catalyst Films. Phys. Chem. Chem. Phys. 2001. Vol. 18. N 3. P. 4141-4153. DOI:https://doi.org/10.1039/B104263G
13. Ketteler G., Ranke W., Schlögl R. Potassium-Promoted Iron Oxide Model Catalyst Films for the Dehydrogenation of Ethylbenzene: An Example for Complex Model Systems. Journal of Catalysis. 2002. Vol. 212. N 1. P. 104-111. URL: https://doi.org/10.1006/jcat.2002.3785
14. Kotarba A., Kruk I., Sojka Z. Energetics of Potassium Loss from Styrene Catalyst Model Components: Reassignment of K Storage and Release Phases. Journal of Catalysis. 2002. Vol. 211. N 1. P. 265-272. URL: https://doi.org/10.1006/jcat.2002.3725
15. Kotarba A., Rożek W., Serafin I., Sojka Z. Reverse Effect of Doping on Stability of Principal Components of Styrene Catalyst: KFeO2 and K2Fe22O34. Journal of Catalysis. 2007. Vol. 247. N 2. P. 238-244. URL: https://doi.org/10.1016/j.jcat.2007.02.009
16. Lai Wu-jiang, Bai Zhen-gu. A Model of Active Center, Modes of Reaction Transition States and Reaction Mechanism for Dehydrogenation of Ethylbenzene to Styrene Over Potassium Promoted Iron Oxide. Chinese Journal of Catalysis. 1986. Vol. 7. N 2. P. 147-153. URL: http://en.cnki.com.cn/Article_en/CJFDTOTAL-CHUA198602007.htm
17. Anikanova L.G., Dvoreckij N.V. Distribution of alkaline promoters in the structure of the iron oxide dehydrogenation catalyst. Kataliz v promyshlennosti. 2012. T. 12. N 4. P. 18-23. URL: http://dx.doi.org/10.18412/1816-0387-2012-4-18-23 (in Russian).
18. Dvoreckij N.V., Stepanov E.G., YUn V.V., Kotel'nikov G.R. The phase composition of the promoted iron oxide catalysts under the conditions of the dehydrogenation reaction. Izv. vuzov. Himiya i him. tekhnologiya. 1990. T. 33. N 8. P. 3-9. (in Russian).
19. Dvoreckij N.V., Stepanov E.G., YUn V.V. ¬Phase diagram of systems Fe2O3-Fe3O4-KFeO2. Izv. Akademii Nauk SSSR. Neorg. Mater. 1991. T. 27. N 6. P. 1265-1268 (in Russian).
20. Ito S., Kurosawa H., Akashi K., Michiue Y., Watanabe M. Crystal structure and electric conductivity of K+-β-ferrite with ideal composition KFe11O17. Solid State Ionics. 1996. Vol. 86-88. Part 2. P. 745-750. URL: https://doi.org/10.1016/0167-2738(96)00164-6
21. Lamberov A.A., Gil'manov H.H., Dement'eva E.V., Kuz'mina O.V. Investigation of the mechanism of influence of cerium additives on the properties of the iron-potassium system-the active component of the catalysts for the dehydrogenation of hydrocarbons. Message 2. Kataliz v promyshlennosti. 2012. T. 12. N 6. P. 60-68. URL: https://www.catalysis-kalvis.ru/jour/article/view/72/69 (in Russian).
22. Dvoreckij N.V., Anikanova L.G., Malysheva Z.G. Types of active centers on the surface of the promoted iron oxide catalyst. Izv. vuzov. Himiya i him. tekhnologiya. 2018. T. 61. N 6. P. 61-68 (in Russian).
23. Anikanova L.G., Dvoreckij N.V. Stabilization of alkaline promoters in the structure of iron oxide dehydrogenation catalysts. Kataliz v promyshlennosti. 2016. T. 16. N 1. P. 29-36. URL: http://dx.doi.org/10.18412/1816-0387-2016-1-29-36 (in Russian).
24. Anikanova L.G., Dvoreckij N.V., Malysheva Z.G. Cationic conductivity in mixed polyferrites. Izv. vuzov. Himiya i him. tekhnologiya. 2016. T. 59. N 1. P. 23-26 (in Russian).
25. Hersog B.D., Rase H.F. In Situ Catalyst Reactivation Used Ethylbenzene Dehydrogenation Catalyst with Agglomerated Potassium Promoter. Ind. and Eng. Chem. Prod. Res. and Div. 1984. Vol. 23. N 2. P.187-196. DOI:https://doi.org/10.1002/chin.198446140