Ярославский государственный технический университет
аспирант
Ярославль, Россия
Ярославль, Ярославская область, Россия
Ярославль, Ярославская область, Россия
Ярославль, Ярославская область, Россия
сотрудник
Самара, Самарская область, Россия
The authors calculated the single occupied molecular orbital energies of the substrate radical and the phthalimide catalyst radical by the Hartree-Fock quantum chemical method (PM7). According to the research, low numerical values of ∆Esomo characterise N-hydroxyphthalimide derivatives containing electron-donating substituents in their structure and possess high catalytic activity. Application of such compounds allows ones to intensify essentially the process of alkylaromatic hydrocarbons aerobic liquid-phase oxidation with preservation of feedstock conversion high parameters and selectivity of its hydroperoxide formation. The calculated data are in good agreement with the experimentally obtained data. Hence, the proposed method can be used to evaluate the catalytic activity of phthalimide compounds with respect to a wide range of aromatic hydrocarbons.
isopropylbenzene, sec-butylbenzene, hydroperoxide, N-hydroxyphthalimide, phthalimide catalysts, quantum chemical calculations
1. Kharlampovich, G.D. & Churkin, Y.V. (1974) Phenols, M.: Khimiya (in Russian).
2. Kurganova, E.A., Kabanova, V.S., Frolov, A.S., Koshel, G.N., Smurova, A.A. & Bajov, E.I. (2023) Hydroperoxide method of phenol and its alkyl derivatives synthesis in combination with ketones of aliphatic and alicyclic series, Neftegaz.RU, 137(5), pp. 34-40 (in Russian).
3. Kurganova, E.A., Bayov, E.I., Frolov, A.S., Kabanova, V.S., Koshel, G.N. & Petukhov, A.A. (2023) Principles of aerobic oxidation of ethylbenzene to hydroperoxide under the presence of phthalimide catalysts, From Chemistry Towards Technology Step-By-Step, 4(2), pp. 8-16 [online]. Available at: https://doi.org/10.52957/2782-1900-2024-4-2-8-16 (accessed 10.02.2024) (in Russian).
4. Serebryakov, B.R., Masagutov, R.M. & Pravdin, V.G. (1989) New processes of organic synthesis, M.: Khimiya (in Russian).
5. Frolov, A.S., Kurganova, E.A., Yarkina, E.M., Lebedeva, N.V., Koshel, G.N. & Kalenova, A.S. (2018) Intensification of the cyclohexane liquid phase oxidation process, Tonkie khimicheskie tekhnologii, 13(4), pp. 50 57 [online]. Available at: https://doi.org/10.32362/2410-6593-2018-13-4-50-57 (accessed 12.02.2024) (in Russian).
6. Yun, Hong, Dalei, Sun & Yanxiong, Fang. (2018) The highly selective oxidation of cyclohexane to cyclohexanone and cyclohexanol over VAlPO4 berlinite by oxygen under atmospheric pressure, Chemistry Central Journal, 36(12) [online]. Available at: https://doi.org/10.1186/s13065-018-0405-6 (accessed 20.02.2024).
7. Emanuel, N.M., Denisov, E.T. & Mayzus, Z.K. (1965) Chain reactions of hydrocarbon oxidation in liquid phase, M.: Nauka (in Russian).
8. Nazimok, V.F., Ovchinnikov, V.I. & Potekhin, V.M. (1987) Liquid-phase oxidation of alkylaromatic hydrocarbons. M.: Khimiya (in Russian).
9. Aoki, Y., Sakaguchi, S. & Ishii, Y. (2005) One-pot synthesis of phenol and cyclohexanone from cyclohexylbenzene catalyzed by N-hydroxyphthalimide (NHPI), Tetrahedron, 61(22), pp. 5219-5222 [online]. Available at: https://doi.org/10.1016/j.tet.2005.03.079 (accessed 10.02.2024).
10. Orlinska, B. & Zawadiak, J. (2013) Aerobic oxidation of isopropylaromatic hydrocarbons to hydroperoxides catalyzed by N-hydroxyphthalimide, Reaction Kinetics, Mechanisms and Catalysis, 110(1), pp. 15-30 [online]. Available at: https://doi.org/10.1007/s11144-013-0581-2 (accessed 08.02.2024).
11. Sawatari, N., Yokota, T., Sakaguchi, S. & Ishii, Y. (2001) Alkane oxidation with air catalyzed by lipophilic N hydroxyphthalimides without any solvent, J. Org. Chem., 66(23), pp. 7889-7891 [online]. Available at: https://doi.org/10.1021/jo0158276 (accessed 12.02.2024).
12. Recupero, F. & Punta, C. (2007) Free Radical Functionalization of Organic Compounds Catalyzed by N Hydroxyphthalimide, Chemical Reviews, (107), pp. 3800-3842 [online]. Available at: https://doi.org/10.1021/cr040170k (accessed 23.01.2024).
13. Galli, C., Gentili, P. & Lanzalunga, O. (2008) Hydrogen Abstraction and Electron Transfer with Aminoxyl Radicals: Synthetic and Mechanistic Issues, Angewandte Chemie International Edition, 47(26), pp. 4790-4796 [online]. Available at: https://doi.org/10.1002/anie.200704292 (accessed 12.02.2024).
14. Koshel, G.N., Smirnova, E.V., Kurganova, E.A., Ekimova, I.D., Lebedeva, N.V., Koshel, S.G. & Plakhtinsky, V.V. (2010) Intensifying the oxidation of isopropylbenzene, Kataliz v promy`shlennost, (3), pp. 26-29 (in Russian).
15. Frolov, A.S. (2016) Hydroperoxide method of xylenols preparation using acetone: Ph.D. Yaroslavl (in Russian).
16. Yarkina, E.M., Kurganova, E.A., Frolov, A.S., Koshel, G.N., Nesterova, T.N., Shakun, V.A. & Spiridonov, S.A. (2020) Para-tret-butylcumene synthesis, Tonkie khimicheskie texnologii, 16(1), pp. 26-35 [online]. Available at: https://doi.org/10.32362/2410-6593-2021-16-1-26-35 (accessed 10.02.2024) (in Russian).
17. Kabanova, V.S., Frolov, A.S., Kurganova, E.A., Sapunov, V.N., Koshel, G.N. & Baev, E.I. (2024) Study of the kinetic regularities of the process of liquid phase oxidation of sec-butylbenzene in the presence of N hydroxyphthalimide, Kataliz v promyshlennosti, 24(3), pp. 39-49 [online]. Available at: https://doi.org/10.18412/1816-0387-2024-3-39-49 (accessed 14.02.2024) (In Russian).
18. Fieser, L.F. & Fieser, M. (1967) Reagents for Organic Synthtsis. Wiley: New York.
19. Frolov, A.S., Kurganova, E.A., Koshel’, G.N. & Nesterova, T.N. (2015) Liquid-phase oxidation of isopropyl-meta-xylene to tertiary hydroperoxide, European Journal of Analytical and Applied Chemistry, (1), pp. 16-22 [online]. Available at: https://doi.org/10.1134/s1070427214070088 (accessed 22.02.2024).
20. Antonovsky, V.L. & Buzlanova, M.M. (1978) Analytical chemistry of organic peroxide compounds. M.: Khimiya (in Russian).
21. Koshel, G.N., Soloviev, M.E., Kurganova, E.A., Rumyantseva, Y.B. & Frolov, A.S. (2013) Quantum chemical analysis of the reaction thermodynamics of hydrocarbon oxidation in the presence of N-hydroxyphthalimide, Vestnik Kazanskogo texnologicheskogo universiteta, 16(2), pp. 302-304 (in Russian).
22. Yufei, Yang, Jieyi, Ma, Junyan, Wu, Weixia, Zhu & Yadong, Zhang. (2022) Experimental and theoretical study on N-hydroxyphthalimide and its derivatives catalyzed aerobic oxidation of cyclohexylbenzene, Chinese Journal of Chemical Engineering, 44(1), pp. 124-130 [online]. Available at: https://doi.org/10.1016/j.cjche.2021.06.017 (accessed 12.02.2024).
23. Novikova, K.V., Kompanets, M.O., Kushch, O.V. & Kobzev, S.P. (2011) Substituted N-hydroxyphthalimides as oxidation catalysts, Reaction Kinetics and Catalysis Letters, 103(1), pp. 31-40 [online]. Available at: https://doi.org/10.1007/s11144-011-0289-0 (accessed 08.02.2024).
24. MOPAC 2016 [online]. Available at: http://openmopac.net/MOPAC2016.html (accessed 10.02.2024).
25. Matsui S., Kuroda H., Hirokane N., Makio H., Takai T., Kato K., Fujita T. & Kamimura Makoto. Method for preparation of hydroperoxides. 2186767 RU. Published 2002 (in Russian).
26. Matsui S. & Fujita T. (2001) New cumene-oxidation systems: O2 activator effects and radical stabilizer effects, Catalysis Today, (71), pp. 145-152.