STUDY OF THE HEAT TREATMENT EFFECT OF MEDIUM-TEMPERATURE ELECTRODE PITCH ON CARBONISATE YIELD
Аннотация и ключевые слова
Аннотация (русский):
Coal tar pitch is a residue of coal tar separation. It is widely used as a binder in the production of electrodes and anode mass. The production of pectic carbonisates and the development of methods to increase the value of its yield is of scientific and applied interest. The author conducted experiments on heat treatment in oxidising medium of medium-temperature electrode pitch of category BsTmelt = 71.5 °C (AO Altai-Koks, Russia). We conducted the process of heat treatment of the pitch in a 5.6 litre reactor heated by using an integrated electric heating system. To enhance the increase of Tmelt during heat treatment, we pumped the gas phase products from the reactor to a collection tank where they condensed. We performed heat treatment at T > 400 °C using both thermal oxidation of pitch and pumping of distillates. We formed the oxidising environment by supplying air by a compressor to the molten pitch. The air supply process started after the holding temperature was reached. The temperature controller provided the holding temperature. The author determined the yield of thermo-oxidation products, melting temperatures Tmelt, and volatile yields X for the resulting products. We obtained pitch with Tmelt = 140 °C and 158 °C. However, this heat treatment significantly reduced the yield of volatile substances in the final products. The temperature of carbonisation of heat-treated pitch was T = 650 °C and T = 850 °C. Therefore, research determines the carbonisate yields. Moreover, carbonisation proceeds with the additional holding times at 450 °C and 650 °C. Hence, heat treatment increased the carbonisate yield by 10%. Holding times at 450 °C and 650 °C also quantitatively increased the yield of carbonisate.

Ключевые слова:
p-toluidine, maleic anhydride, (2z)-4-(methylanilino)-4-oxobut-2-enoic acid, IR and NMR1H- spectroscopy, potentiometric titration, metrological characteristics
Список литературы

1. Privalov V.E., Stepanenko M.A. Coal pitch. Moscow: Metallurgiya, 1981. 208 p. (in Russian).

2. Mochalov V.V., Pistrova P.D., Zaidis E.G. Osobennosti nizkotemperaturnoj karbonizacii pekov razlichnoj stepeni kondensirovannosti [Features of low-temperature carbonation of pitches of various degrees of condensation] // Koks i himiya [Coke and chemistry]. 1985. Vol. 1, pp. 31-35. (in Russian).

3. Montes-Moránab M.A., Crespoa J.L., Youngb R.J., Garcı́aa R., Moinelo S.R. Mesophase from a coal tar pitch: a Raman spectroscopy study // Fuel Processing Technology. 2002. V. 77–78. P. 207-212. Available at: https://doi.org/10.1016/S0378-3820(02)00079-6 (accessed 06.08.2024).

4. Lia L., Lina X., Zhanga Y., Daib J., Xua D., Wanga Y. Characteristics of the mesophase and needle coke derived from the blended coal tar and bio-mass tar pitch // Journal of Analytical and Applied Pyrolysis. 2020. V. 150. P. 104889. Available at: https://doi.org/10.1016/j.jaap.2020.104889 (accessed 06.08.2024).

5. Cheng X., Zha Q., Li X., Yang X. Modified characteristics of mesophase pitch prepared from coal tar pitch by adding waste polystyrene // Fuel Processing Technology. 2008. V. 89, I. 12. P. 1436-1441. Available at: https://doi.org/10.1016/j.fuproc.2008.07.003 (accessed 16.08.2024).

6. Cheng X.L., Zha Q.F., Zhong J.T., Yang X.J. Needle coke formation derived from co-carbonization of ethylene tar pitch and polystyrene. // Fuel. 2009. V. 88. P. 2188-2192. Available at: https://doi.org/10.1016/j.fuel.2009.05.006 (accessed 16.08.2024).

7. Svitilova J., Machovic V., Kolar F. 9,10-bis(chlormethyl)anthracene - Curing agent of coal tar pitch // Acta Geodyn. Geomater. 2006. Vol. 3, No. 2 (142). P. 57-62.

8. Xu H-t., Guo J-g., Li W-l, Li X-k. The effect of the molecular structure of naphthalene-based mesophase pitch on the properties of carbon fibers derived from it. New Carbon Mater. 2023. V. 38, №2. P. 369-377. Available at: https://doi.org/10.1016/S1872-5805(23)60709-7 (accessed 26.08.2024).

9. Cao Y., Zang C., Zhang J., Gao F., Liu Y. High thermal-conductivity mesophase pitch-based graphite fiber with circular cross-section through a spinneret with a Y-shaped spinning hole // Carbon Trends. 2023. V. 10. P. 100244. Available at: https://doi.org/10.1016/j.cartre.2022.100244 (accessed 06.08.2024).

10. Yuan G., Xue Z., Cui Z., Westwood A., Dong Z., Cong Y., Zhang J., Zhu H., Li X. Constructing the Bridge from Isotropic to Anisotropic Pitches for Preparing Pitch-Based Carbon Fibers with Tunable Structures and Properties // ACS Omega. 2020. V.5, I. 34. P. 21948-21960. Available at: https://doi.org/10.1021/acsomega.0c03226 (accessed 04.08.2024).

11. Pat. No. Ru 2709446 Method for production of mesophase pitch // Kondrasheva N. K., Boitsova A.A., Strokin S.V. Publ. 17.12.2019 (in Russian).

12. Wang Y., Li M., Zhao Z., Xu G. Preliminary exploration of the mechanism governing the cell structure variation of mesophase coal pitch/carbon black composite carbon foam // Diamond and Related Materials. 2023. V. 136. P. 110077. Available at: https://doi.org/10.1016/j.diamond.2023.110077 (accessed 03.08.2024).

13. Hlabathe T., Shiba N., Liu X. Mesophase pitch derived carbon foams with high compressive strengths and thermal conductivities as cobalt support // Materials Today Communications. 2023. V. 35. P. 105537. Available at: https://doi.org/10.1016/j.mtcomm.2023.105537 (accessed 06.08.2024).

14. Gong X., Lou B., Yu R., Zhang Z., Guo S., Li G., Wu B., Liu D. Carbonization of mesocarbon microbeads prepared from mesophase pitch with different anisotropic contents and their application in lithium-ion batteries // Fuel Processing Technology. 2021. V. 217. P. 106832. Available at: https://doi.org/10.1016/j.fuproc.2021.106832 (accessed 26.08.2024).

15. Alvarez P., Granda M., Sutil J., Santamaría R.l., Ricardo Santamaría, Blanco C., Menéndez R. A unified process for preparing mesophase and isotropic material from anthracene oil-based pitch // Fuel Processing Technology. 2011. V. 92, I. 3. P. 421-427. Available at: https://doi.org/10.1016/j.fuproc.2010.10.004 (accessed 06.08.2024).

16. Lou B., Liu D., Qiu Y., Y. Fu, Guo S., Yu R., Gong X., Zhang Z., He X. Modified effect on properties of mesophase pitch prepared from various two-stage thermo-treatments of FCC decant oil // Fuel. 2021. V. 284. P. 119034. Available at: https://doi.org/10.1016/j.fuel.2020.119034 (accessed 06.08.2024).

17. Santamaría R., Blanco C., Granda Ferreira M. Mesophase development in petroleum and coal-tar pitches and their blends // Journal of Analytical and Applied Pyrolysis. 2003. V. 68-69: P. 409-424. Available at: https://doi.org/10.1016/S0165-2370(03)00034-2 (accessed 16.08.2024).

18. Tarakhno E.V., Shustikov V.I., Pintyulin I.N., Berman D.D., Gamazina G.A., Pyrin A.I. Issledovanie mezofaznyh prevrashchenij v kamennougol'nyh myagkih pekah [Investigation of mesophase transformations in soft coal pitches] // Koks i himiya [Coke and chemistry]. 1992. 11. pp. 25-29 (in Russian).

19. Lü X.-J., Xu J., Li J., Lai Y.-Q., Liu Y.-X. Thermal-Treated Pitches as Binders for TiB2/C Composite Cathodes // Metallurgical and Materials Transactions. 2012.V. 43. P. 219–227. Available at: https://doi.org/10.1007/s11661-011-0821-x (accessed 06.08.2024).

20. Xie X.-l., Zhao C.-x., Zhang H.-p., Cao Q. The effect of coal-tar pitch modification with polyethylene glycol on its properties and the semi-coke structure derived from it // Carbon. 2014. V. 76. P. 473. Available at: https://doi.org/10.1016/j.carbon.2014.04.046 (accessed 06.08.2024).

21. Kumar R., Jain H., Chaudhary A., Kumari S., Mondal D.P., Srivastava A.K. Thermal conductivity and fire-retardant response in graphite foam made from coal tar pitch derived semi coke. // Composites Part B: Engineering. 2019. 172. P. 121–130. Available at: https://doi.org/10.1016/j.compositesb.2019.05.036 (accessed 06.08.2024).

22. Khokhlova G. P., Barnakov Ch. N., Malysheva V. Yu., Popova A.N. Vliyanie rezhima termoobrabotki na kataliticheskuyu grafitaciyu kamennougol'nogo peka [Influence of the heat treatment regime on the catalytic graphite of coal pitch] // Himiya tverdogo topliva [Solid fuels chemistry]. 2015. Vol. 2, pp. 10-16. Available at: https://doi.org/10.7868/S002311771502005X (accessed 06.08.2024) (in Russian).

23. Khokhlova G. P., Malysheva V. Yu., Barnakov Ch. N., Popova A.N., Ismagilov Z.R. Vliyanie prirody i kolichestva katalizatora na fazovuyu strukturu uglerodnogo poluchennogo nizkotemperaturnoj kataliticheskoj grafitizacii kamennougol'nogo peka [Influence of the nature and amount of the catalyst on the phase structure of the carbon obtained by low-temperature catalytic graphitization of coal pitch] // Vestnik Kuzbasskogo gosudarstvennogo tekhnicheskogo universiteta [Bulletin of Kuzbass State Technical University]. 2013. Vol. 5, 99. pp. 21-24 (in Russian).

24. Khokhlova G. P., Barnakov Ch. N., Khitsova L. M., Malysheva V.Yu., Ismagilov Z.R. Osobennosti termoprevrashcheniya kamennougol'nogo peka v usloviyah nizkotemperaturnoj kataliticheskoj grafitacii pri raznyh rezhimah termoobrabotki [The peculiarities of thermal conversion of coal tar in low-temperature catalytic graphitation under different heat treatment modes] // Vestnik Kuzbasskogo gosudarstvennogo tekhnicheskogo universiteta [Bulletin of Kuzbass State Technical University]. 2014. Vol. 1, 101, pp. 89-94 (in Russian).

25. Twigg A.N. Relationship between chemical structure and secondary quinoline insoluble formation in electrode binder pitches // Fuel. 1987. V. 66, Issue 11. P. 1540-1543. Available at: https://doi.org/10.1016/0016-2361(87)90015-9 (accessed 06.08.2024).

26. Gaisarov M.G., Maltsev L.D., Mochalov V.V. O prirode α1-frakcii peka i ee vliyanii na kachestvo uglerodistyh izdelij [On the nature of the α1-fraction of pitch and its effect on the quality of carbonaceous products] // Koks i himiya [Coke and chemistry]. 1981. Vol. 10, pp. 37-39 (in Russian).

27. Marsh H., Heintz E.A., Rodriguez-Reinoso F. Introduction to Carbon Technologies. Alicante: Universidad de Alicante, 1997. P. 669.

28. Zander. M. Die Chemie der Pyrolyse von aromatischen Kohlenwasserstoffen in der Gas- und Flüssigphase // Erdöl-Erdgas-Kohle. 1989. V. 105. P. 373.

29. Lewis I. Chemistry of carbonization // Carbon. 1982. V. 20. P. 519-529. Available at: https://doi.org/10.1016/0008-6223(82)90089-6 (accessed 06.08.2024).

30. Sidorov O.F., Seleznev A.N. Perspektivy proizvodstva i sovershenstvovaniya potrebitel'skih svojstv kamennougol'nyh elektrodnyh pekov [Prospects of production and improvement of consumer properties of coal electrode pitches] // Rossijskij himicheskij zhurnal [Russian Journal of Chemistry]. 2006. Vol. L(1), pp. 16-24 (in Russian).

31. Kovalev R. Yu., Gavrilyuk O. M., Nikitin A. P., Ismagilov Z. R. Issledovanie termookislitel'noj obrabotki elektrodnogo kamennougol'nogo peka [Investigation of thermoxylation treatment of electrode coal pitch] // Koks i himiya [Coke and chemistry]. 2023. Vol. 7. pp. 14-18. Available at: https://doi.org/14-18.https://doi.org/10.52351/00232815_2023_07_14 (accessed 06.08.2024) (in Russian).

Войти или Создать
* Забыли пароль?