Иваново, Ивановская область, Россия
УДК 547.661.2 Группа динафтила. Динафтил. Динафтолф. Динафтилдихинон и т.д.
УДК 547.46 Многоосновные карбоновые кислоты
The article presents the details about the interaction of a number of N,N´-substituted diimides of binaphthylhexacarboxylic acid (cubogenes) with sodium dithionite. The reaction takes place in the formation of perylene dyes in the technology of dyeing and printing of cotton fabrics. The authors found that there is a rapid formation of intermediate products - tetraanions of initial compounds due to the transfer of two electrons from dithionite anions in the initial stage of the reaction. Subsequently, these intermediates can be transformed into the initial dianions by oxidation either by air oxygen or by sulfite formed by dithionite at the first stage. Also, a parallel chemical stage of cyclisation with the formation of perylene derivatives is possible depending on the nature of substituents at nitrogen atoms in the initial diimide molecules. The occurrence of a reversible redox stage of tetraanion formation confirmed electrochemically on a carbon-titanium electrode. The elemental analysis of IR and electronic absorption spectroscopy show the formation of perylene derivatives. The authors proposed a general stoichiometric reaction mechanism for the interaction reactions of cubogens having different substituents at nitrogen atoms with sodium dithionite on the basis of the experimental data. The results are applicable in the practice of finishing textile materials with cubogenes and in liquid-phase preparation of thin-layer photoactive materials based on perylene derivatives.
N,N'-substituted diimides of binaphthylhexacarboxylic acid, perylenetetracarboxylic acid diimide derivatives, spectrophotometry, voltammetry, reaction mechanism
1. Dokunikhin N.S., Vorozhtsov G.N., Alekseev V.I., Filippova M.S., Shulepova O.I., Masanova N.N., Ryabinin V.A. Kubogeny – krasiteli novogo tipa [Kubogenes as dyes of a new type] // Himicheskaya industriya [Chemical Industry]. 1981. No. 10. Pp. 592-595 (in Russian).
2. USSR patent No. 919342 / Vorozhtsov G.N., Masanova N.N., Alekseev V.I., Solomatin G.G. Publ. 1983.
3. Polenov Yu.V., Budanov V.V. Redox transformations in reductive cyclization of binaphthylhexacarboxylic acid dianhydride and diimide under the action of rongalite and sodium dithionite // Russ. J. Appl. Chem. 1996. V. 69, No. 12. P. 1837-1840.
4. Polenov Y.V., Nikitin K.S., Egorova E.V., Patrusheva D.A. Reaction of 2,2′-di(4-chlorophenyl)-1,1′,3,3′-tetraoxo-2,2′,3,3′-tetrahydro-1H,1′H- 6,6′- di(benzo[de]isoquinoline)-7,7′-dicarboxylic acid with thiourea dioxide in water-alkaline solution // Russ. J. Gen. Chem. 2021. V. 91, No. 4. P. 631-635. DOI:https://doi.org/10.1134/S1070363221040095.
5. Alessio P., Braunger M.L., Aroca R.F., Olivati C.A., Constantino C.J.L. Supramolecular Organization Electrical Properties Relation in Nanometric Organic Films // J. Phys. Chem. C. 2015. V. 119, No. 21. P. 12055 - 12064. DOI:https://doi.org/10.1021/acs.jpcc.5b03093.
6. J. Canto-Aguilar E., Gutiérrez-Moreno D., Sastre-Santos A., Morikawa D., Abe M., Fernández-Lázaro F., Oskam G., Mori S. Identification of the loss mechanisms in TiO2 and ZnO solar cells based on blue, piperidinyl-substituted, monoanhydride perylene dyes // Electrochim. Acta. 2020. V. 355. Art. 136638. DOI:https://doi.org/10.1016/j.electacta.2020.136638.
7. Deng M., Zhang G., Yu L., Xu X., Peng Q. Noncovalent interaction enables planar and efficient propellerlike perylene diimide acceptors for polymer solar cells // Chem. Eng. J. 2021. V. 426, No. 12. Art. 131910. DOI:https://doi.org/10.1016/j.cej.2021.131910.
8. Echeverry C.A., Cotta R., Insuasty A., Ortíz A., Martín N., Echegoyen L., Insuasty B. Synthesis of novel light harvesters based on perylene imides linked to triphenylamines for Dyes Sensitized Solar Cells // Dyes and Pigments. 2018. V. 153. P. 182-188. DOI:https://doi.org/10.1016/j.cej.2021.131910.
9. Singh R., Kim M., Lee J.-J., Ye T., Keivanidis P.E., Cho K. Excimer formation effects and trap-assisted charge recombination loss channels in organic solar cells of perylene diimide dimer acceptors // J. Mater. Chem. C. 2020. No. 8. P. 1686-1696. DOI:https://doi.org/10.1016/j.cej.2021.131910.
10. Georgiev N.I., Sakr A.R., Bojinov V.B. Design and synthesis of novel fluorescence sensing perylene diimides based on photoinduced electron transfer // Dyes and Pigments. 2011. V. 91, No. 3. P. 332-339. DOI:https://doi.org/10.1016/j.dyepig.2011.04.015.
11. Lv Z., Liu J., Bai W., Yang S., Chen A. A simple and sensitive label-free fluorescent approach for protein detection based on a Perylene probe and aptamer // Biosens. Bioelectron. 2015. V. 64. P. 530-534. DOI:https://doi.org/10.1016/j.bios.2014.09.095.
12. Sekida S., Kameyama T., Koga T., Hadano S., Watanabe S., Niko Y. Highly lipophilic and solid emissive N annulated perylene bisimide syn-thesis for facile preparation of bright and far-red excimer fluorescent nano-emulsions with large Stokes shift // J. Photoch. Photobio. A. 2018. V. 364. P. 16-21. DOI:https://doi.org/10.1016/j.jphotochem.2018.05.023.
13. Rostami-Tapeh-Esmail E., Golshan M., Salami-Kalajahi M., Roghani-Mamaqani H. Perylene-3,4,9,10-tetracarboxylic diimide and its derivatives: Synthesis, properties and bioapplications // Dyes and Pigments. 2020. V. 180. Art. 108488 DOI:https://doi.org/10.1016/j.dyepig.2020.108488.
14. Szukalska A., Szukalski A., Stachera J., Zajac D., Chrzumnicka E. Martynski M., Mysliwiec J. Perylene Based chromophore as a versatile dye for light amplification // Materials. 2022. V. 15(3), No. 980. DOI:https://doi.org/10.3390/ma15030980.
15. Zhang F., Ma Y., Chi Y., Yu H., Li Y., Jiang T., Wei X., Shi J. Self-assembly, optical and electrical properties of perylene diimide dyes bearing unsymmetrical substituents at bay position // Sci. Rep. 2018. V. 8 (1), No. 8208. DOI:https://doi.org/10.1038/s41598-018-26502-5.
16. Aivali S., Tsimpouki L., Anastasopoulos C., Kallitsis J.K. Synthesis and Optoelectronic Characterization of Perylene Diimide-Quinoline Based Small Molecules // Molecules. 2019. V. 24(23), No. 4406. DOI:https://doi.org/10.3390/molecules24234406.
17. Huang C., Barlow S., Marder S.R. Perylene-3,4,9,10-tetracarboxylic Acid Diimides: Synthesis, Physical Properties, and Use in Organic Electronics // J. Org. Chem. 2011. V. 76. P. 2386–2407. DOI: dx.doi.org/10.1021/jo2001963.
18. USSR patent №248870 / Rogovik V.I., Stapvinchuk V.G., Shalimova G.V., Zabotina E.A. Publ. 1969.
19. Nikitin K.S., Polenov Y.V., Egorova E.V., Patrusheva D.A. Poluchenie fotochuvstvitel'nyh materialov na osnove proizvodnyh perilena [Preparation of photosensitive materials based on perylene derivatives] // Sb. tr. Nauchno-issledovatel'skaya deyatel'nost' v klassicheskom universitete: tradicii i innovacii. Materialy mezhdunarodnogo nauchno-prakticheskogo festivalya [Collection of proceedings 'Research activities in a classical university: traditions and innovations'. Materials of the International Scientific and Practical Festival]. Ivanovo. 2022. Pp. 196-203. (In Russian).
20. Shulepova O.I., Ryabinin V.A., Starichenko V.F., Vorozhtsov G.N. Mekhanizm vosstanovitel'noj ciklizacii N,N′-dizameshchennyh diimida 1,1′-binaftil-4,4′,5,5′,8,8′-geksakarbonovoj kisloty v vodnoj shchelochnoj srede [Mechanism of reductive cyclisation of N,N′-disubstituted diimides of 1,1′-binaphthyl-4,4′,5,5′,5′,8,8′-hexacarboxylic acid in aqueous alkaline medium] // Zhurn. org. himii [Journal of Organic Chemistry]. 1993. Vol. 29, No. 5. Pp. 1001-1010. (In Russian).
21. Polenov Y.V., Nikitin K.S., Egorova E.V., Patrusheva D.A. Vzaimodejstvie 2,2′-di(3,5-dimetilfenil)-1,1′,3,3′-tetraokso-2,2′,3,3′-tetragidro-1h,1′h-6,6′-bi(benzo[de]izohinolin)-7,7′-dikarbonovoj kisloty s dioksidom tiomocheviny v vodno-shchelochnom rastvore [Interaction of 2,2′-di(3,5-dimethylphenyl)-1,1′,3,3′-tetraoxo-2,2′,3,3′-tetrahydro-1h,1′h-6,6′-bi(benzo[de]isoquinoline)-7,7′-dicarboxylic acid with thiourea dioxide in water-alkaline solution] // Izv. vuzov. Himiya i him. tekhnologiya [Proceedings of universities. Chemistry and chemical technology]. 2022. Vol. 65, No. 9. Pp. 47-54. DOI:https://doi.org/10.6060/ivkkt.20226509.6639 (in Russian).
22. Polenov Yu.V., Egorova E.V. Vzaimodejstvie 7,7´-diokso-7N,7´N-3,3´-benzimidazo[2,1-a]benzo[de]izohinolina-4, 4´-dikarbonovoj kisloty s ditionitom natriyav vodno-shchelochnom rastvore [Interaction of 7,7´-dioxo-7H,7´-H-3,3´-benzimidazo[2,1-a]benzo[de]isoquinolin-4, 4´-dicarboxylic acid with sodium dithionite in aqueous-alkaline solution] // Izv. vuzov. Himiya i him. tekhnologiya [Proceedings of universities. Chemistry and chemical technology]. 2024. Vol. 67, No. 6. Pp. 80-87. DOI:https://doi.org/10.6060/ivkkt.20246706.7056 (in Russian).
23. Nikitin, K.S.; Polenov, Yu.V.; Egorova, E.V. Razlozhenie dioksida tiomocheviny v aerobnyh i anaerobnyh usloviyah v vodno-shchelochnom rastvore [Decomposition of thiourea dioxide under aerobic and anaerobic conditions in a water-alkaline solution] // Zhurn. fiz. himii [Journ. of Phys. Chem]. 2020. Vol. 94, No. 10. Pp. 1505-1509. DOI:https://doi.org/10.31857/S0044453720100209 (in Russian).