Yaroslavl, Yaroslavl, Russian Federation
Yaroslavl, Yaroslavl, Russian Federation
Yaroslavl, Yaroslavl, Russian Federation
Yaroslavl, Yaroslavl, Russian Federation
Yaroslavl, Yaroslavl, Russian Federation
UDK 546.723 Трехвалентное железо
The paper concerns with the mechanism of the promoters influence on the ceramic structure of the iron oxide catalyst for the dehydrogenation of olefin and alkylaromatic hydrocarbons. The research shows the dynamics of changes in the porous structure of alloyed and unalloyed catalysts as a result of heat treatment in air at several temperatures significantly exceeding the operating temperature. Moreover, the paper presents data on the mechanical strength of alloyed and unalloyed model catalysts. Indeed, the particles are sintered to each other at the contact points of the globules forming a mechanically strong and thermally stable framework. However, the particles are sintered to each other at the contact points of the globules forming. Supposedly, potassium performs the function of a kind of flux. It lowers the temperature of the melting phase formation, which ensures a strong sintering of the ceramic material (catalyst) particles to each other. Hereby, there is a formation of a stable framework without a noticeable reduction of the catalyst working surface. The addition of zirconium oxide as an alloying agent provides an increase in the depth and degree of annealing of imperfections during the restructuring of the catalyst structure. Additionally, it provides the redistribution of the released energy. This assumption is confirmed by increasing of the alloyed catalyst granules mechanical strength. The results of research can be used for development and modification of iron-oxide catalysts for dehydrogenation of olefinic and alkylaromatic hydrocarbons.
ceramic structure, porous structure, potassium promotion, zirconium alloying additives, iron oxide catalyst
1. Dvoretskaya, A.N., Anikanova, L.G. & Dvoretskiy, N.V. (2022) The effect of the precursor and the synthesis mode on the properties of hematite for the preparation of promoted iron oxide catalysts, Kataliz v promyshlennosti, 22(5), pp. 6-14. DOI:https://doi.org/10.18412/1816-0387-2022-5-6-14 (in Russian).
2. Anikanova, L.G. & Dvoretskiy N.V. (2021) Catalytic properties and chemical stability of potassium polyferrites with additives of four-charge cations, Kataliz v promyshlennosti, 21(3), pp. 177-181. DOI:https://doi.org/10.18412/1816-0387-2021-1-3-177-181 (in Russian).
3. Abe, K., Kano, Yu., Ohshima, M., Kurokawa, H. & Miura, H. (2011) Effect of adding Mo to Fe-Ce-K mixed oxide catalyst on ethylbenzene dehydrogenation, Journal of the Japan Petroleum Institute, 54(5), pp. 338-343. DOI:https://doi.org/10.1627/jpi.54.338}.
4. Anikanova, L.G. & Dvoretsky, N.V. (2020) The effect of additives of double-charged ions on the activity and chemical stability of catalytically active potassium ferrites, Kataliz v promyshlennosti, 20(1), pp. 33-39. DOI:https://doi.org/10.18412/1816-0387-2020-1-33-39 (in Russian).
5. Vagapov, A.V., Klementyev, A.N., Zhuravleva, M.V. & Klimentyeva, G.Yu. (2019) Operational efficiency of catalysts in the production of aromatic compounds, Yuzhno-sibirskij nauchnyj vestnik, 2(26), pp. 33-38. DOI:https://doi.org/10.25699/SSSB.2019.2(26).32518 (in Russian).
6. Wang, Li-Li & Zhang, H.C. (2015) First-principles studies on k-promoted porous iron oxide catalysts, Computational condensed Matter 3, 3(3), pp. 46-52. DOI:https://doi.org/10.1016/j.cocom.2015.03.002.
7. Anikanova, L.G., Malysheva, Z.G., Sudzilovskaya, T.N. & Dvoretsky, N.V. (2019) Charge compensation in potassium polyferrite in alloying with four-charged ions, Izvestiya vuzov. Himiya i him. tekhnologiya, 62(10), pp. 103-108. DOI:https://doi.org/10.6060/ivkkt.20196210.5953 (in Russian).
8. Kano, Yu., Ohshima, M., Kurokawa, H. & Miura, H. (2013) Dehydrogenation of ethylbenzene over Fe–Ce–Rb and Fe–Ce–Cs mixed oxide catalysts, Reaction Kinetics, Mechanisms and Catalysis, 109(1), pp. 29 41. DOI:https://doi.org/10.1007/s11144-013-0549-2.
9. Li, Z. & Shanks, B.H. (2011) Role of Cr and V on the stability of potassium-promoted iron oxides used as catalysts in ethylbenzene dehydrogenation, Appl. Catalysis A: Gen., 405(1-2), pp. 101-107. DOI:https://doi.org/10.1016/j.apcata.2011.07.036.
10. Dvoretsky, N.V., Anikanova, L.G., Malysheva, Z.G. & Sudzilovskaya, T.N. (2021) Formation of the active state of the promoted iron oxide dehydrogenation catalyst, From Chemistry Towards Technology Step-by- Step, 2(1), pp. 60-73 DOI:https://doi.org/10.52957/27821900_2021_01_60 [online]. Available at: http://chemintech.ru/index.php/tor/2021tom2no1 (accessed 01.06.2023) (in Russian).
11. Lamberov, A.A., Gilmanov, H.H., Dementieva, E.V. & Kuzmina, O.V. (2012) Investigation of the effect of cerium additives mechanism on the properties of the iron–potassium system - the active component of catalysts for the dehydrogenation of hydrocarbons. Post 2, Kataliz v promyshlennosti, 12(6), pp. 60-68. DOI:https://doi.org/10.18412/1816-0387-2012-6-60-68 (in Russian).
12. Lamberov, A.A. & Gilmanov, H.H. (2012) Modernization of catalysts and isoprene synthesis technology at OAO "Nizhnekamskneftekhim". Kazan: Kazanskiy universitet (in Russian).
13. Dvoretsky, N.V., Stepanov, E.G., Yun, V.V. & Kotelnikov, G.R. (1990) Phase composition of promoted iron oxide catalysts under conditions of dehydrogenation reaction, Izvestiya vuzov. Himiya i him. tekhnologiya, 33(8), pp. 3-9 (in Russian).
14. Garry, R. & Meima, P. (2001) Govind Menon Catalyst deactivation phenomena in styrene production, Applied Catalysis A: General, (212), pp. 239-245 [online]. Available at: http://doi.org/10.1016/S0926-860X(00)00849-8
15. Muhler, M., Schütze, J., Wesemann, M., Rayment, T., Dent, A., Schlögl, R. & Ertl, G. (1990) The nature of the iron oxide-based catalyst for dehydrogenation of ethylbenzene to styrene: I. Solid-state chemistry and bulk characterization, Journal of Catalysis, 126(2), pp. 339-360 [online]. Available at: http://doi.org/10.1016/0021-9517(90)90003-3
16. Muhler, M., Schlögl, R. & Ertl, G. (1992) The nature of the iron oxide-based catalyst for dehydrogenation of ethylbenzene to styrene 2. Surface chemistry of the active phase, Journal of Catalysis, 138(2), pp. 413-444. DOI:https://doi.org/10.1016/0021-9517(92)90295-S.
17. Joergen, Lundin, Leif, Holmlid, P., Govind, Menon & Lars, Nyborg. (1993) Surface composition of iron oxide catalysts used for styrene production: an Auger electron spectroscopy/scanning electron microscopy study, Ind. Eng. Chem. Res., 32(11), pp. 2500-2505 [online]. Available at: https://doi.org/10.1021/ie00023a010
18. Smirnova, E.A., Anikanova, L.G., Stepanov, E.G. & Dvoretsky, N.V. (1999) Solid-phase interaction in the KFeO2-Fe2O3 system, Izvestiya vuzov. Himiya i him. tekhnologiya, 42(3), pp. 116-117 (in Russian).
19. Ataullah, Khan, & Panagiotis G.S. (2008) Relationship between temperature-programmed reduction profile and activity of modified ferrite-based catalysts for WGS reaction, Journal of Molecular Catalysis A: Chemical, 280(1-2), pp. 43-51 [online]. Available at: http://doi.org/10.1016/j.molcata.2007.10.022
20. Ataullah, Khan, Ping, Chen, Boolchand, P. & Panagiotis, G.S. (2008) Modified nano-crystalline ferrites for high-temperature WGS membrane reactor applications, Journal of Catalysis, 253(1), pp. 91-104 [online]. Available at: http://doi.org/10.1016/j.jcat.2007.10.018
21. Gunugunuri, K.R., Boolchand, P. & Panagiotis, G.S. (2011) Sulfur tolerant metal doped Fe/Ce catalysts for high temperature WGS reaction at low steam to CO ratios – XPS and Mössbauer spectroscopic study, Journal of Catalysis, 282(2), pp. 258-269. DOI:https://doi.org/10.1016/j.jcat.2011.06.016.
22. Buyanov, N.E., Gudkova, G.B. & Karnaukhov, A.P. (1965) Determination of the specific surface of solids by thermal desorption of argon, Kinetika i kataliz, 6(6), pp. 1085-1091 (in Russian).
23. Plachenov, T.G. (1962) Mercury porometric installation P-5M. L.: Khimiya (in Russian).
24. Ione, K.G. (1965) Mercury porometry of globular systems, Metody issledovaniya katalizatorov i kataliticheskih reakcij, (2), pp. 42-54 (in Russian).
25. Radchenko, E.D., Nefedov, B.K. & Aliyev, R.R. (1987) Industrial catalysts of hydrogenation processes of oil refining. M.: Khimiya (in Russian).
26. Dvoretsky, N.V. & Anikanova, L.G. (2002) Globular structure of iron oxide, Izvestiya vuzov. Himiya i him. tekhnologiya, 45(2), pp. 149-151 (in Russian).
27. Weiss, W., Zscherpel, D. & Schlogl, R. (1998) On the nature of the active site for the ethylbenzene dehydrogenation over iron oxide catalysts, Catalysis Letters, 52(3-4), pp. 215-220. DOI:https://doi.org/10.1023/A:1019052310644.
28. Zscherpel, D., Weis,s W. & Schlögl, R. (1997) Adsorption and Dehydrogenation of Ethylbenzene on Ultrathin Iron Oxide Model Catalyst Films, Surface Science, 382(1-3), pp. 326-335 [online]. Available at: http://doi.org/10.1016/S0039-6028(97)00195-7
29. Wang, X.-G., Weiss, W., Shaikhutdinov, Sh.K., Ritter, M., Petersen, M., Wagner, F., Schlogl, R. & Scheffle, M. (1998) The hematite (α-Fe2O3) (0001) surface: evidence for domains of distinct chemistry, Journal: Physical Review Letters, 81(5), pp. 1038-1041 [online]. Available at: http://doi.org/10.1103/PhysRevLett.81.1038
30. Shaikhutdinov, S.K. & Weiss, W. (1999) Oxygen pressure dependence of the -Fe2O3(0001) surface structure, Surface Science, 432(3), pp. 627-634. DOI:https://doi.org/10.3389/fchem.2019.00451.
31. Khatamian, M., Ghadiri, M. & Haghighi, M. (2014) Deactivation of Fe-K commercial catalysts during ethylbenzene dehydrogenation and novel method for their regeneration, Indian Journal of Chemical Technology, 9(5), pp. 158-169.
32. Dvoretsky, N.V., Anikanova, L.G. & Malysheva, Z.G. (2018) Types of active centers on the surface of a promoted iron oxide catalyst, Izvestiya vuzov. Himiya i him. tekhnologiya, 61(6), pp. 61-68 [online]. Available at: http://dx.doi.org/10.6060/tcct.20186106.5658 (accessed 12.06.2023).
33. Volkov, M.I. (1989) The effect of mechanical activation on the physico-chemical properties of iron oxides as initial components for the preparation of catalysts. PhD. Ivanovo (in Russian).