Yaroslavl, Yaroslavl, Russian Federation
Yaroslavl, Yaroslavl, Russian Federation
Yaroslavl, Yaroslavl, Russian Federation
Yaroslavl State Technical University
Yaroslavl, Russian Federation
Yaroslavl, Yaroslavl, Russian Federation
Kazan, Kazan, Russian Federation
UDK 547.534.1 Этилбензол
The article describes a study of basic principles of aerobic liquid-phase oxidation of ethylbenzene to hydroperoxide. According to the research, the use of phthalimide catalysts (N-hydroxyphthalimide and its derivatives) can increase the oxidation rate of this hydrocarbon by 1.5-2 times compared with initiators of different nature. At the same time, high selectivity of target hydroperoxide formation is still present - about 90%. The authors recommend conditions for oxidation of ethylbenzene in the presence of phthalimide catalysts based on experimental data. The results obtained can be used to improve the technology for co-production of propylene oxide and styrene, valuable products of the main chemical and petrochemical synthesis.
ethylbenzene, liquid-phase aerobic oxidation, ethylbenzene hy-droperoxide, N-hydroxyphthalimide, phthalimide catalysts, propylene oxide, styrene
1. Budarina, V.I.(2021) Petrochemistry. Ecologically clean production of propylene oxide. HPPO-process, XI Vserossi-jskij festival` nauki. Nizhny Novgorod: NGASU [online]. Available at: https://www.elibrary.ru/item.asp?id=47328061 (accessed 21.04.2023) (in Russian).
2. Voronov, N.A. (2022) Analysis of modern propylene oxide production technologies, NefteGazoXimiya, (3), pp. 22-26. DOIhttps://doi.org/10.24412/2310-8266-2022-3-22-26 (in Russian).
3. Kawabata, T., Yamamoto, J., Koike, H. & Yoshida, S. (2019) Trends and Views in the Development of Tech-nologies for Propylene Oxide Production, R&D Report, “SUMITOMO KAGAKU”, 2019(1), pp. 8.
4. Kurganova, E.A., Frolov, A.S., Korshunova, A.I., Koshel, G.N. & Yarkina, E.M. (2021) Hydroperoxide meth-od for the synthesis of p-tert-butylphenol, Russian Chemical Bulletin, International Edition, 70(10), pp. 1951-1956. DOIhttps://doi.org/10.1007/s11172-021-3302-4.
5. Kurganova, E.A., Frolov, A.S., Koshel, G.N. & Kabanova, V.S. (2022) The reaction of cyclohexylbenzene oxi-dation in the presence of solvents, From Chemistry Towards Technology Step-By-Step, 3(1), pp. 88-94 [online]. Available at: http://chemintech.ru/index.php/tor/2022tom3no1 (accessed 21.04.2023) (in Russian).
6. Gumerova, E.R., Efanova, E.A. & Murtazin, N.F. (2015) Improvement of ethylbenzene oxidation to ethylben-zene hydroperoxide, Vestnik Kazanskogo texnologicheskogo universiteta, (18) [online]. Available at: https://cyberleninka.ru/article/n/sovershenstvovanie-protsessa-okisleniya-etilbenzola-do-gidroperoksida-etilbenzola (accessed 21.04.2023) (in Russian).
7. Golubeva, I.A. & Zhagfarov, F.G. (2020) Gas-processing enterprises of Russia - sources of raw materials for oil and gas chemistry. Problems and solutions, Mat-ly III Mezhdunar. nauch.-texn. foruma po ximicheskim texnologiyam i neftegazopererabotke «Nefteximiya – 2020». Minsk: BGTU [online]. Available at: https://elib.belstu.by/handle/123456789/36965 (accessed 21.04.2023) (in Russian).
8. Huafeng, Shao, Xiaoxue, Chen, & Aihua, He. (2022) Strategy for isoprene-styrene multi-block copolymers obtained by stereospecific copolymerization through TiCl4/MgCl2 catalyst, Materials Today Communications, (30) [online]. Available at: https://doi.org/10.1016/j.mtcomm.2021.103044 (accessed 21.04.2023).
9. Anname, L., Anzel, F., Daniel, O. & Rehana, M.E. (2022) Magnetic styrene polymers obtained via coordina-tion polymerization of styrene by Ni and Cu nanoparticles, Inorganic Chemistry Communications, (142) [online]. Available at: https://doi.org/10.1016/j.inoche.2022.109586 (accessed 21.04.2023).
10. Danov, S.M., Sulimov, A.V., Ryabova, T.A. & Ovcharov, A.A. (2011) Main trends in propylene oxide produc-tion, Trudy Nizhegorodskogo gosudarstvennogo texnicheskogo universiteta im. R.E. Alekseeva, 3(90), pp. 267-273 (in Russian).
11. Smolin, R.A., Elimanova, G.G., Batyrshin, N.N. & Kharlampidi, H.E. (2011) Hydroperoxide epoxidation of model octene-1 under the presence of molybdenum blue, Vestnik Kazanskogo texnologicheskogo universiteta, (18) [online]. Available at: https://cyberleninka.ru/article/n/gidroperoksidnoe-epoksidirovanie-modelnogo-oktena-1-v-prisutstvii-molibdenovoy-sini (accessed 21.04.2023) (in Russian).
12. Minisci, F. et al (2003) Selective functionalisation of hydrocarbons by nitric acid and aerobic oxidation cata-lysed by N-hydroxyphthalimide and iodine under mild conditions, Tetrahedron Letters, 44(36), pp. 6919-6922. DOI:https://doi.org/10.1002/chin.200349050.
13. Melone, L. et al (2012) Selective catalytic aerobic oxidation of substituted ethylbenzenes under mild conditions, Journal of Molecular Catalysis A: Chemical, (355), pp. 155-160. DOI:https://doi.org/10.1016/j.molcata.2011.12.009.
14. Habibi, D. et al (2013) Efficient catalytic systems based on cobalt for oxidation of ethylbenzene, cyclohexene and oximes in the presence of N-hydroxyphthalimide, Applied Catalysis A: General, (466), pp. 282-299. DOI:https://doi.org/10.1016/j.apcata.2013.06.045.
15. Toribio, P.P., Campos-Martin, J.M., Fierro, J.L. & Toribio, P.P. (2005) Liquid-phase ethylbenzene oxidation to hydroperoxide with barium catalysts, Journal of Molecular Catalysis A: Chemical, 227(1-2), pp. 101-105. DOI:https://doi.org/10.1016/j.molcata.2004.10.003.
16. Krylov, I.B., Terent’ev, A.O., Krylov, I.B. & Vil, V.A. (2015) Cross-dehydrogenative coupling for the intermo-lecular C–O bond formation, Beilstein journal of organic chemistry, 11(1), pp. 92-146. DOIhttps://doi.org/10.3762/bjoc.11.13