PRINCIPLES OF AEROBIC OXIDATION OF ETHYLBENZENE TO HYDROPEROXIDE UNDER THE PRESENCE OF PHTHALIMIDE CATALYSTS
Abstract and keywords
Abstract (English):
The article describes a study of basic principles of aerobic liquid-phase oxidation of ethylbenzene to hydroperoxide. According to the research, the use of phthalimide catalysts (N-hydroxyphthalimide and its derivatives) can increase the oxidation rate of this hydrocarbon by 1.5-2 times compared with initiators of different nature. At the same time, high selectivity of target hydroperoxide formation is still present - about 90%. The authors recommend conditions for oxidation of ethylbenzene in the presence of phthalimide catalysts based on experimental data. The results obtained can be used to improve the technology for co-production of propylene oxide and styrene, valuable products of the main chemical and petrochemical synthesis.

Keywords:
ethylbenzene, liquid-phase aerobic oxidation, ethylbenzene hy-droperoxide, N-hydroxyphthalimide, phthalimide catalysts, propylene oxide, styrene
References

1. Budarina, V.I.(2021) Petrochemistry. Ecologically clean production of propylene oxide. HPPO-process, XI Vserossi-jskij festival` nauki. Nizhny Novgorod: NGASU [online]. Available at: https://www.elibrary.ru/item.asp?id=47328061 (accessed 21.04.2023) (in Russian).

2. Voronov, N.A. (2022) Analysis of modern propylene oxide production technologies, NefteGazoXimiya, (3), pp. 22-26. DOIhttps://doi.org/10.24412/2310-8266-2022-3-22-26 (in Russian).

3. Kawabata, T., Yamamoto, J., Koike, H. & Yoshida, S. (2019) Trends and Views in the Development of Tech-nologies for Propylene Oxide Production, R&D Report, “SUMITOMO KAGAKU”, 2019(1), pp. 8.

4. Kurganova, E.A., Frolov, A.S., Korshunova, A.I., Koshel, G.N. & Yarkina, E.M. (2021) Hydroperoxide meth-od for the synthesis of p-tert-butylphenol, Russian Chemical Bulletin, International Edition, 70(10), pp. 1951-1956. DOIhttps://doi.org/10.1007/s11172-021-3302-4.

5. Kurganova, E.A., Frolov, A.S., Koshel, G.N. & Kabanova, V.S. (2022) The reaction of cyclohexylbenzene oxi-dation in the presence of solvents, From Chemistry Towards Technology Step-By-Step, 3(1), pp. 88-94 [online]. Available at: http://chemintech.ru/index.php/tor/2022tom3no1 (accessed 21.04.2023) (in Russian).

6. Gumerova, E.R., Efanova, E.A. & Murtazin, N.F. (2015) Improvement of ethylbenzene oxidation to ethylben-zene hydroperoxide, Vestnik Kazanskogo texnologicheskogo universiteta, (18) [online]. Available at: https://cyberleninka.ru/article/n/sovershenstvovanie-protsessa-okisleniya-etilbenzola-do-gidroperoksida-etilbenzola (accessed 21.04.2023) (in Russian).

7. Golubeva, I.A. & Zhagfarov, F.G. (2020) Gas-processing enterprises of Russia - sources of raw materials for oil and gas chemistry. Problems and solutions, Mat-ly III Mezhdunar. nauch.-texn. foruma po ximicheskim texnologiyam i neftegazopererabotke «Nefteximiya – 2020». Minsk: BGTU [online]. Available at: https://elib.belstu.by/handle/123456789/36965 (accessed 21.04.2023) (in Russian).

8. Huafeng, Shao, Xiaoxue, Chen, & Aihua, He. (2022) Strategy for isoprene-styrene multi-block copolymers obtained by stereospecific copolymerization through TiCl4/MgCl2 catalyst, Materials Today Communications, (30) [online]. Available at: https://doi.org/10.1016/j.mtcomm.2021.103044 (accessed 21.04.2023).

9. Anname, L., Anzel, F., Daniel, O. & Rehana, M.E. (2022) Magnetic styrene polymers obtained via coordina-tion polymerization of styrene by Ni and Cu nanoparticles, Inorganic Chemistry Communications, (142) [online]. Available at: https://doi.org/10.1016/j.inoche.2022.109586 (accessed 21.04.2023).

10. Danov, S.M., Sulimov, A.V., Ryabova, T.A. & Ovcharov, A.A. (2011) Main trends in propylene oxide produc-tion, Trudy Nizhegorodskogo gosudarstvennogo texnicheskogo universiteta im. R.E. Alekseeva, 3(90), pp. 267-273 (in Russian).

11. Smolin, R.A., Elimanova, G.G., Batyrshin, N.N. & Kharlampidi, H.E. (2011) Hydroperoxide epoxidation of model octene-1 under the presence of molybdenum blue, Vestnik Kazanskogo texnologicheskogo universiteta, (18) [online]. Available at: https://cyberleninka.ru/article/n/gidroperoksidnoe-epoksidirovanie-modelnogo-oktena-1-v-prisutstvii-molibdenovoy-sini (accessed 21.04.2023) (in Russian).

12. Minisci, F. et al (2003) Selective functionalisation of hydrocarbons by nitric acid and aerobic oxidation cata-lysed by N-hydroxyphthalimide and iodine under mild conditions, Tetrahedron Letters, 44(36), pp. 6919-6922. DOI:https://doi.org/10.1002/chin.200349050.

13. Melone, L. et al (2012) Selective catalytic aerobic oxidation of substituted ethylbenzenes under mild conditions, Journal of Molecular Catalysis A: Chemical, (355), pp. 155-160. DOI:https://doi.org/10.1016/j.molcata.2011.12.009.

14. Habibi, D. et al (2013) Efficient catalytic systems based on cobalt for oxidation of ethylbenzene, cyclohexene and oximes in the presence of N-hydroxyphthalimide, Applied Catalysis A: General, (466), pp. 282-299. DOI:https://doi.org/10.1016/j.apcata.2013.06.045.

15. Toribio, P.P., Campos-Martin, J.M., Fierro, J.L. & Toribio, P.P. (2005) Liquid-phase ethylbenzene oxidation to hydroperoxide with barium catalysts, Journal of Molecular Catalysis A: Chemical, 227(1-2), pp. 101-105. DOI:https://doi.org/10.1016/j.molcata.2004.10.003.

16. Krylov, I.B., Terent’ev, A.O., Krylov, I.B. & Vil, V.A. (2015) Cross-dehydrogenative coupling for the intermo-lecular C–O bond formation, Beilstein journal of organic chemistry, 11(1), pp. 92-146. DOIhttps://doi.org/10.3762/bjoc.11.13

Login or Create
* Forgot password?