E`LEKTROPROVODNOST` POLIFERRITA KALIYA, LEGIROVANNOGO DVUXZARYADNY`MI KATIONAMI
Abstract and keywords
Abstract (English):
S cel'yu vyyasneniya mehanizma zaryadovoy kompensacii i sposoba razmescheniya legiruyuschih dobavok byli sintezirovany obrazcy βʺ-poliferritov kaliya s shirokim diapazonom mol'noy doli vvodimyh dvuhzaryadnyh kationov. Dlya dannyh obrazcov izmeryali elektronnuyu provodimost', kationnuyu provodimost', provodili rentgenofazovyy analiz (RFA). Vyyavlen mehanizm zaryadovoy kompensacii v β″-poliferrite kaliya pri legirovanii dvuhzaryadnymi ionami kal'ciya, stronciya, magniya, cinka. Mehanizmy zaryadovoy kompensacii razlichayutsya v zavisimosti ot radiusa vvodimogo dvuhzaryadnogo iona. Rezul'taty izmereniya kationnoy provodimosti β″-poliferritov kaliya pokazali, chto krupnye kationy kal'ciya i stronciya snizhayut podvizhnost' ionov kaliya. Takie dobavki ne tol'ko perspektivny dlya povysheniya mehanicheskoy prochnosti i termostabil'nosti granul katalizatora, no i uvelichivayut himicheskuyu ustoychivost' granul kontakta. Korrozionnaya stoykost' granul yavlyaetsya kriticheskim parametrom, opredelyayuschim srok effektivnogo funkcionirovaniya katalizatora. Dannye po elektronnoy provodimosti pozvolyayut zaklyuchit', chto vnedrenie kationov Mg2+, Zn2+ rezko snizhaet elektronnyy obmen v strukture β″-poliferrita kaliya, chto neizbezhno dolzhno privesti k dezaktivacii katalizatora, v to vremya kak iony Sa2+ i Sr2+ ne snizhayut skorost' perenosa elektronov. Ispol'zovanie predlagaemogo podhoda pozvolit intensificirovat' issledovatel'skiy process.

Keywords:
poliferrit, promotor, dvuhzaryadnyy kation, zaryadovaya kompensaciya, elektronnaya provodimost', kationnaya provodimost', zhelezooksidnyy katalizator
Text
Publication text (PDF): Read Download
References

1. Joseph Y., Ketteler G., Kuhrs C., Ranke W., Weiss W., Schlögl R. On the Preparation and Composition of Potassium Promoted Iron Oxide Model Catalyst Films // Phys. Chem. Chem. Phys. 2001. Vol. 18, no. 3. R. 4141 4153. DOI:https://doi.org/10.1039/B104263G.

2. Ketteler G., Ranke W., Schlögl R. Potassium-Promoted Iron Oxide Model Catalyst Films for the Dehydrogenation of Ethylbenzene: An Example for Complex Model Systems // Journal of Catalysis. 2002. Vol. 212, no. 1. P. 104-111. URL: https://doi.org/10.1006/jcat.2002.3785

3. Dvoreckiy N.V., Anikanova L.G., Malysheva Z.G. Tipy aktivnyh centrov na poverhnosti promotirovannogo zhelezooksidnogo katalizatora // Izv. vuzov. Himiya i him. tehnologiya. 2018. T. 61, № 6. S. 61-68. URL: http://dx.doi.org/10.6060/tcct.20186106.5658

4. Kotarba A., Kruk I., Sojka Z. Energetics of Potassium Loss from Styrene Catalyst Model Components: Reassignment of K Storage and Release Phases // Journal of Catalysis. 2002. Vol. 211, no. 1. P. 265-272. URL: https://doi.org/10.1006/jcat.2002.3725

5. Anikanova L.G., Dvoreckiy N.V. Stabilizaciya schelochnyh promotorov v strukture zhelezooksidnyh katalizatorov degidrirovaniya // Kataliz v promyshlennosti. 2016. T. 16, № 1. S. 29-36. URL: http://dx.doi.org/10.18412/1816-0387-2016-1-29-36

6. Kotarba A., Rożek W., Serafin I., Sojka Z. Reverse Effect of Doping on Stability of Principal Components of Styrene Catalyst: KFeO2 and K2Fe22O34 // Journal of Catalysis. 2007. Vol. 247, no. 2. P. 238-244. URL: https://doi.org/10.1016/j.jcat.2007.02.009

7. Meima G.R., Menon P.G. Catalyst Deactivation Phenomena in Styrene Production // Applied Catalysis A: General. 2001. Vol. 212. P. 239-245. URL: https://ru.scribd.com/document/342010350/Catalyst-Deactivation-Phenomena-in-Styrene

8. Anikanova L.G., Dvoreckiy N.V. Raspredelenie schelochnyh promotorov v strukture zhelezooksidnogo katalizatora degidrirovaniya // Kataliz v promyshlennosti. 2012. № 4. S. 18-23. URL: https://www.catalysis-kalvis.ru/jour/article/view/48/45

9. Abe K., Ohshima M., Kurokawa H., Miura H. Effect of addition of Ce to Fe-K mixed oxide catalyst in dehydrogenation of ethylbenzene // Journal of the Japan Petroleum Institute. 2010. Vol. 53, no. 2. P. 89-94. DOI:https://doi.org/10.1627/jpi.53.89.

10. Abe K., Kano Yu., Ohshima M., Kurokawa H., Miura H. Effect of adding Mo to Fe-Ce-K mixed oxide catalyst on ethylbenzene dehydrogenation // Journal of the Japan Petroleum Institute. 2011. Vol. 54, no. 5. P. 338-343. DOI:https://doi.org/10.1627/jpi.54.338.

11. Nariki S., Ito S., Uchinokura K., Yoneda N. Formation of -, -and -Alumina Type Ferrites in Rb2O Fe2O3 and Cs2O-Fe2O3 Systems and Ionic Conduction of - and - Phases // Journal of the Ceramic Society of Japan. 1988. Vol. 96, no. 1110. P. 186-192. URL: https://doi.org/10.2109/jcersj.96.186

12. Anikanova L.G., Dvoreckiy N.V. Vliyanie dobavok dvuhzaryadnyh ionov na aktivnost' i himicheskuyu ustoychivost' kataliticheski aktivnyh ferritov kaliya // Kataliz v promyshlennosti. 2020. T. 20, № 1. S. 33-39. URL: https://doi.org/10.18412/1816-0387-2020-1-33-39

13. Bugaenko L.T., Ryabyh S.M., Bugaenko A.L. Pochti polnaya sistema srednih ionnyh kristallograficheskih radiusov i ee ispol'zovanie dlya opredeleniya potencialov ionizacii // Vestnik mosk. un-ta. Ser. 2. Himiya. 2008. T. 49, № 6. S. 363-384. URL: https://cyberleninka.ru/article/n/pochti-polnaya-sistema-srednih-ionnyh-kristallograficheskih-radiusov-i-ee-ispolzovanie-dlya-opredeleniya-potentsialov-ionizatsii/viewer

14. Dvoreckaya A.N, Anikanova L.G., Sudzilovskaya T. N., Malysheva Z. G., Dvoreckiy N.V. Formirovanie keramicheskoy struktury promotirovannogo zhelezooksidnogo katalizatora // Ot himii k tehnologii shag za shagom. 2023. T. 4, № 3. S. 8-16. URL: https://doi.org/10.52957/2782-1900-2024-4-3-8-16

Login or Create
* Forgot password?