SELECTIVE MODIFICATION OF TETRAHYDROCHROMENO[2,3-D]PYRIMIDIN-2-ONES
Abstract and keywords
Abstract (English):
The paper presents the results of the synthesis and characterisation of seven new tetrahydrochromeno[2,3-d]pyrimidin-2-ones derivatives obtained by selective modification of the hydroxyl group at the C-8 position. The authors successfully used alkylation and acetylation reactions to introduce substituents into the molecule. This resulted in a series of new heterocyclic compounds with yields up to 94 %. The authors characterised the obtained compounds by NMR spectroscopy (¹H and ¹³C) and mass spectrometry.

Keywords:
tetrahydrochromeno[2,3-d]pyrimidin-2-ones, methyl iodide, acetic anhydride, alkylation, acylation
Text
Text (PDF): Read Download
References

1. Costa M., Dias T. A., Brito A., Proença F. Biological importance of structurally diversified chromenes // Eur. J. Med. Chem. 2016. Vol. 123. P. 487-507. DOI:https://doi.org/10.1016/j.ejmech.2016.07.057. Available at: https://www.sciencedirect.com/science/article/abs/pii/S0223523416306201 (accessed: 08.10.2024).

2. Laitonjam W., Thiyam M., Laitonjam W.S., Haobam R. Synthesis and screening for antioxidant and cytotoxic activities of novel 2-thioxobenzo[f]chromeno[2,3-d]pyrimidin-4-ones derived by cetylpyridinium chloride catalyzed multicomponent reactions in aqueous micellar media // Indian J. Chem. Sec. B (IJC-B). 2021. Vol. 60, Iss. 9. P 1243-1257. Available at: http://nopr.niscair.res.in/handle/123456789/60 (accessed: 08.10.2024).

3. Halawa A.H., Elaasser M.M., El Kerdawy A.M., Abd El-Hady A. M. A. I., Emam H.A., El-Agrody A.M. Anticancer activities, molecular docking and structure–activity relationship of novel synthesized 4H chromene, and 5H-chromeno [2,3-d]pyrimidine candidates // Med. Chem. Res. 2017. Vol. 26, Iss. 10. P. 2624–2638. DOI:https://doi.org/10.1007/s00044-017-1961-3. Available at: https://tohoku.elsevierpure.com/en/publications/anticancer-activities-molecular-docking-and-structureactivity-rel (accessed: 08.10.2024).

4. Oh S., Young Lee J., Choi I., Ogier A., Kwon D.Y., Jeong H., Son S.J., Kim Y., Kwon H., Park S., Kang H., Kong K., Ahn S., Nehrbass U., Kim M.J., Song R. Discovery of 4H-chromeno[2,3-d]pyrimidin-4-one derivatives as senescence inducers and their senescence-associated antiproliferative activities on cancer cells using advanced phenotypic assay // Eur. J. Med. Chem. 2021. Vol. 209. P. 112550. DOI:https://doi.org/10.1016/j.ejmech.2020.112550. Available at: https://www.sciencedirect.com/science/article/abs/pii/S0223523420305225 (accessed: 08.10.2024).

5. Oliveira-Pinto S., Pontes O., Lopes D., Sampaio-Marques B., Costa M.D., Carvalho L., Gonçalves C.S., Costa B.M., Maciel P., Ludovico P., Baltazar F., Proença F., Costa M. Unravelling the anticancer potential of functionalized chromeno[2,3-b]pyridines for breast cancer treatment // Bioorg. Chem. 2020. Vol. 100. P. 103942. DOI:https://doi.org/10.1016/j.bioorg.2020.103942. Available at: https://www.sciencedirect.com/science/article/abs/pii/S0045206820 (accessed: 08.10.2024).

6. Moustafa A.H., Mohammed S.M., Abd El-Salam E.A., El-Sayed H.A. Synthesis and Antimicrobial Activity of New 3H-Chromeno[2,3-d]pyrimidine Derivatives // Russ. J. Gen. Chem. 2020. Vol. 90. iss. 8. P. 1566–1572. DOI:https://doi.org/10.1134/S1070363220080277. Available at: https://link.springer.com/article/10.1134/S1070363220080277 (accessed: 10.10.2024).

7. Sharma P.K., Sharma H.P., Chakole C.M., Pandey J., Chauhan M.K. Application of Vitamin E TPGS in ocular therapeutics – attributes beyond excipient // J. Indian Chem. Soc. 2022. Vol. 99, Iss. 3. P. 100387. DOI:https://doi.org/10.1016/j.jics.2022.100387. Available at: https://www.sciencedirect.com/science/article/abs/pii/S0019452222000498 (accessed: 11.10.2024).

8. Pandey A., Pandey A., R. Dubey R., Kant R., Pandey J. Synthesis and computational studies of potent antimicrobial and anticancer indolone scaffolds with spiro cyclopropyl moiety as a novel design element // J. Indian Chem. Soc. 2022. Vol. 99. iss. 7. P. 100539. DOI:https://doi.org/10.1016/j.jics.2022.100539. Available at: https://www.sciencedirect.com/science/article/abs/pii/S0019452222002011 (accessed: 09.10.2024).

9. Hamid A.M.A., El-Sayed H.A., Mohammed S.M., Moustafa A.H., Morsy H.A. Functionalization of 1,2,3-Triazole to Pyrimidine, Pyridine, Pyrazole, and Isoxazole Fluorophores with Antimicrobial Activity // Russ. J. Gen. Chem. 2020. Vol. 90, Iss. 3. P. 476-482. DOI:https://doi.org/10.1134/S1070363220030226. Available at: https://link.springer.com/article/10.1134/S1070363220030226 (accessed: 08.10.2024).

10. Zhang, X. F., Xie, L., Liu, Y., Xiang, J. F., Li, L., Tang, Y. L. Molecular interaction and energy transfer between human serum albumin and bioactive component Aloe dihydrocoumarin // J. Mol. Struct. 2008. Vol. 888, Iss. 1-3. P. 145-151. DOI:https://doi.org/10.1016/j.molstruc.2007.11.051. Available at: https://www.sciencedirect.com/science/article/abs/pii/S0022286007007971 (accessed: 08.10.2024).

11. Maresca A., Temperini C., Pochet L., Masereel B., Scozzafava A., Supuran C. T. Deciphering the mechanism of carbonic anhydrase inhibition with coumarins and thiocoumarins // J. Med. Chem. 2010. Vol. 53, Iss. 1. P. 335 344. DOI:https://doi.org/10.1021/jm901287j. Available at: https://pubs.acs.org/doi/10.1021/jm901287j (accessed: 11.10.2024).

12. Chirkova Zh.V., Makarova E.S., Uryadova A.M., Filimonov S.I., Shalabanova M.S., Ivanovsky S.A. Aminolysis of hexahydrochromeno[4,3-d]pyrimidine-2,5-diones // From Chemistry Towards Technology Step-by-Step. 2024. Vol. 5, Iss. 1. Pp. 40-47. Available at: https://chemintech.ru/ru/nauka/issue/5007/view (accessed: 08.10.2024) (In Russian). [Chirkova Zh.V., Makarova E.S., Uryadova A.M., Filimonov S.I., Shalabanova M.S., Ivanovsky S.A. Aminolysis of hexahydrochromeno[4,3-d]pyrimidine-2,5-diones // From Chemistry Towards Technology Step-By-Step. 2024. Vol. 5. iss. 1. P. 114-121 [online]. Available at: https://chemintech.ru/ru/nauka/issue/5007/view] (accessed: 08.10.2024).

13. Bajire S.K., Prabhu A., Bhandary Y.P., Irfan K.M., Shastry R.P. 7-Ethoxycoumarin rescued Caenorhabditis elegans from infection of COPD derived clinical isolate Pseudomonas aeruginosa through virulence and biofilm inhibition via targeting Rhl and Pqs quorum sensing systems // World J. Microbiol. Biotechnol. 2023. Vol. 39, Iss. 8. P. 208. DOI:https://doi.org/10.1007/s11274-023-03655-8. Available at: https://link.springer.com/article/10.1007/s11274-023-03655-8 (accessed: 08.10.2024).

14. Fatykhov R.F., Chupakhin, O.N., Inyutina A.K., Khalymbadzha I.A. Synthetic Approaches to Unsymmetrically Substituted 5,7-Dihydroxycoumarins // Synthesis. 2020. Vol. 52, Iss. 5. P. 660-672. DOI:https://doi.org/10.1055/s-0039-1690780. Available at: https://www.thieme-connect.com/products/ejournals/abstract/10.1055/s-0039-1690780 (accessed: 12.10.2024).

15. Sai Priya T., Ramalingam V., Suresh Babu K. Natural products: A potential immunomodulators against inflammatory-related diseases // Inflammopharmacology. 2024. Vol. 32, Iss. 5. P. 2821-2859. DOI:https://doi.org/10.1007/s10787-024-01562-4. Available at: https://link.springer.com/article/10.1007/s10787-024-01562-4 (accessed: 13.10.2024).

16. Fu Z., Zhang L., Hang S., Wang S., Li N., Sun X., Wang Z., Sheng R., Wang F., Wu W., Guo, R. Synthesis of coumarin derivatives: a new class of coumarin-based G protein-coupled receptor activators and inhibitors // Polymers. 2022. Vol. 14, Iss. 10. P. 2021. DOI:https://doi.org/10.3390/polym14102021. Available at: https://www.mdpi.com/2073-4360/14/10/2021 (accessed: 12.10.2024).

17. Makarova E.S., Kabanova M.V., Filimonov S.I., Chirkova Z.V., Ivanovsky S.A., Shetnev A.A., Suponitsky K.Y. Regioselective synthesis of substituted tetrahydrochromeno[2,3-d]pyrimidin-2-ones and-pyrimidine-2-thiones. // Russ. Chem. Bull. 2023. Vol. 72, Iss. 6. P. 1454-1465. DOI:https://doi.org/10.1007/s11172-023-3920-0. Available at: https://link.springer.com/article/10.1007/s11172-023-3920-0 (accessed: 14.10.2024).

18. Makarova E.S., Kabanova M.V., Filimonov S.I., Shetnev A.A., Suponitsky K.Yu. Synthesis of substituted hexahydro-2H-chromeno[4,3-d]pyrimidine-2,5-diones and their modification at the hydroxy group // Russ. Chem. Bull. 2022. Vol. 71, Iss. 5. P. 1034-1042. DOI:https://doi.org/10.1007/s11172-022-3505-3. Available at: https://link.springer.com/article/10.1007/s11172-022-3505-3/ (accessed: 14.10.2024).

Login or Create
* Forgot password?