Ivanovo, Ivanovo, Russian Federation
UDK 547.661.2 Группа динафтила. Динафтил. Динафтолф. Динафтилдихинон и т.д.
UDK 547.46 Многоосновные карбоновые кислоты
Issledovany zakonomernosti reakcii vzaimodeystviya ryada N,N´-zameschennyh diimidov binaftilgeksakarbonovoy kisloty (kubogenov) s ditionitom natriya, protekayuschey pri obrazovanii perilenovyh krasiteley v tehnologii krasheniya i pechataniya hlopchatobumazhnyh tkaney. Obnaruzheno, chto v nachal'noy stadii reakcii proishodit bystroe obrazovanie promezhutochnyh produktov – tetraanionov ishodnyh soedineniy za schet perehoda dvuh elektronov ot ditionit-anionov. V dal'neyshem ukazannye promezhutochnye soedineniya mogut prevraschat'sya v ishodnye dianiony za schet okisleniya libo kislorodom vozduha, libo sul'fitom, obrazuyuschimsya iz ditionita na pervoy stadii, a takzhe, v zavisimosti ot prirody zamestiteley pri atomah azota v ishodnyh molekulah diimidov, vozmozhna parallel'naya himicheskaya stadiya ciklizacii s obrazovaniem perilenovyh proizvodnyh. Nalichie obratimoy redoks-stadii obrazovaniya tetraaniona podtverzhdaetsya takzhe vozmozhnost'yu ee protekaniya elektrohimicheski na uglesitallovom elektrode. Obrazovanie perilenovyh proizvodnyh pokazano metodami elementnogo analiza, IK- i elektronnoy spektroskopii pogloscheniya. Na osnovanii poluchennyh eksperimental'nyh dannyh dlya reakciy vzaimodeystviya kubogenov, imeyuschih razlichnye zamestiteli pri atomah azota, s ditionitom natriya predlozhen obschiy stehiometricheskiy mehanizm reakcii. Poluchennye rezul'taty mogut byt' ispol'zovany v praktike otdelki tekstil'nyh materialov kubogenami, a takzhe pri zhidkofaznom poluchenii tonkosloynyh fotoaktivnyh materialov na osnove perilenovyh proizvodnyh.
N,N'-zameschennye diimida binaftilgeksakarbonovoy kisloty, proizvodnye diimida perilentetrakarbonovoy kisloty, spektrofotometriya, vol'tamperometriya, mehanizm reakcii
1. Dokunihin N.S., Vorozhcov G.N., Alekseev V.I., Filippova M.S., Shulepova O.I., Masanova N.N., Ryabinin V.A. Kubogeny – krasiteli novogo tipa // Himicheskaya industriya. 1981. № 10. S. 592-595.
2. Patent SSSR № 919342 / Vorozhcov G.N., Masanova N.N., Alekseev V.I., Solomatin G.G. Opubl. 1983.
3. Polenov Yu.V., Budanov V.V. Redox transformations in reductive cyclization of binaphthylhexacarboxylic acid dianhydride and diimide under the action of rongalite and sodium dithionite // Russ. J. Appl. Chem. 1996. V. 69, No. 12. P. 1837-1840.
4. Polenov Y.V., Nikitin K.S., Egorova E.V., Patrusheva D.A. Reaction of 2,2′-di(4-chlorophenyl)-1,1′,3,3′-tetraoxo-2,2′,3,3′-tetrahydro-1H,1′H- 6,6′- di(benzo[de]isoquinoline)-7,7′-dicarboxylic acid with thiourea dioxide in water-alkaline solution // Russ. J. Gen. Chem. 2021. V. 91, No. 4. P. 631-635. DOI:https://doi.org/10.1134/S1070363221040095.
5. Alessio P., Braunger M.L., Aroca R.F., Olivati C.A., Constantino C.J.L. Supramolecular Organization Electrical Properties Relation in Nanometric Organic Films // J. Phys. Chem. C. 2015. V. 119, No. 21. P. 12055 - 12064. DOI:https://doi.org/10.1021/acs.jpcc.5b03093.
6. Canto-Aguilar E., Gutiérrez-Moreno D., Sastre-Santos A., Mori-kawa D., Abe M., Fernández-Lázaro F., Oskam G., Mori S. Identification of the loss mechanisms in TiO2 and ZnO solar cells based on blue, piperidinyl-substituted, monoanhydride perylene dyes // Electrochim. Acta. 2020. V. 355. Art. 136638. DOI:https://doi.org/10.1016/j.electacta.2020.136638.
7. Deng M., Zhang G., Yu L., Xu X., Peng Q. Noncovalent interaction enables planar and efficient propellerlike perylene diimide acceptors for polymer solar cells // Chem. Eng. J. 2021. V. 426, No. 12. Art. 131910. DOI:https://doi.org/10.1016/j.cej.2021.131910.
8. Echeverry C.A., Cotta R., Insuasty A., Ortíz A., Martín N., Echegoyen L., Insuasty B. Synthesis of novel light harvesters based on perylene imides linked to triphenylamines for Dyes Sensitized Solar Cells // Dyes and Pigments. 2018. V. 153. P. 182-188. DOI:https://doi.org/10.1016/j.cej.2021.131910.
9. Singh R., Kim M., Lee J.-J., Ye T., Keivanidis P.E., Cho K. Excimer formation effects and trap-assisted charge recombination loss channels in organic solar cells of perylene diimide dimer acceptors // J. Mater. Chem. C. 2020. No. 8. P. 1686-1696. DOI:https://doi.org/10.1016/j.cej.2021.131910.
10. Georgiev N.I., Sakr A.R., Bojinov V.B. Design and synthesis of novel fluorescence sensing perylene diimides based on photoinduced electron transfer // Dyes and Pigments. 2011. V. 91, No. 3. P. 332-339. DOI:https://doi.org/10.1016/j.dyepig.2011.04.015.
11. Lv Z., Liu J., Bai W., Yang S., Chen A. A simple and sensitive label-free fluorescent approach for protein detection based on a Perylene probe and aptamer // Biosens. Bioelectron. 2015. V. 64. P. 530-534. DOI:https://doi.org/10.1016/j.bios.2014.09.095.
12. Sekida S., Kameyama T., Koga T., Hadano S., Watanabe S., Niko Y. Highly lipophilic and solid emissive N annulated perylene bisimide syn-thesis for facile preparation of bright and far-red excimer fluorescent nano emulsions with large Stokes shift // J. Photoch. Photobio. A. 2018. V. 364. P. 16-21. DOI:https://doi.org/10.1016/j.jphotochem.2018.05.023.
13. Rostami-Tapeh-Esmail E., Golshan M., Salami-Kalajahi M., Roghani-Mamaqani H. Perylene-3,4,9,10-tetracarboxylic diimide and its derivatives: Synthesis, properties and bioapplications // Dyes and Pigments. 2020. V. 180. Art. 108488 DOI:https://doi.org/10.1016/j.dyepig.2020.108488.
14. Szukalska A., Szukalski A., Stachera J., Zajac D., Chrzumnicka E. Martynski M., Mysliwiec J. Perylene Based chromophore as a versatile dye for light amplification // Materials. 2022. V. 15(3), No. 980. DOI:https://doi.org/10.3390/ma15030980.
15. Zhang F., Ma Y., Chi Y., Yu H., Li Y., Jiang T., Wei X., Shi J. Self-assembly, optical and electrical properties of perylene diimide dyes bearing unsymmetrical substituents at bay position // Sci. Rep. 2018. V. 8 (1), No. 8208. DOI:https://doi.org/10.1038/s41598-018-26502-5.
16. Aivali S., Tsimpouki L., Anastasopoulos C., Kallitsis J.K. Synthesis and Optoelectronic Characterization of Perylene Diimide-Quinoline Based Small Molecules // Molecules. 2019. V. 24(23), No. 4406. DOI:https://doi.org/10.3390/molecules24234406.
17. Huang S., Barlow S., Marder S.R. Perylene-3,4,9,10-tetracarboxylic Acid Diimides: Synthesis, Physical Properties, and Use in Organic Electronics // J. Org. Chem. 2011. V. 76. P. 2386–2407. DOI: dx.doi.org/10.1021/jo2001963.
18. Patent SSSR №248870 / Rogovik V.I., Stapvinchuk V.G., Shalimova G.V., Zabotina E.A. Opubl. 1969.
19. Nikitin K.S., Polenov Yu.V., Egorova E.V., Patrusheva D.A. Poluchenie fotochuvstvitel'nyh materialov na osnove proizvodnyh perilena // Sb. tr. Nauchno-issledovatel'skaya deyatel'nost' v klassicheskom universitete: tradicii i innovacii. Materialy mezhdunarodnogo nauchno-prakticheskogo festivalya. Ivanovo. 2022. S. 196-203.
20. Shulepova O.I., Ryabinin V.A., Starichenko V.F., Vorozhcov G.N. Mehanizm vosstanovitel'noy ciklizacii N,N′-dizameschennyh diimida 1,1′-binaftil-4,4′,5,5′,8,8′-geksakarbonovoy kisloty v vodnoy schelochnoy srede // Zhurn. org. himii. 1993. T. 29, № 5. S. 1001-1010.
21. Polenov Yu.V., Nikitin K.S., Egorova E.V., Patrusheva D.A. Vzaimodeystvie 2,2′-di(3,5-dimetilfenil)-1,1′,3,3′-tetraokso-2,2′,3,3′-tetragidro-1h,1′h-6,6′-bi(benzo[de]izohinolin)-7,7′-dikarbonovoy kisloty s dioksidom tiomocheviny v vodno-schelochnom rastvore // Izv. vuzov. Himiya i him. tehnologiya. 2022. T. 65, № 9. S. 47-54. DOI:https://doi.org/10.6060/ivkkt.20226509.6639.
22. Polenov Yu.V., Egorova E.V. Vzaimodeystvie 7,7´-diokso-7N,7´N-3,3´-benzimidazo[2,1-a]benzo[de]izohinolina-4, 4´-dikarbonovoy kisloty s ditionitom natriyav vodno-schelochnom rastvore // Izv. vuzov. Himiya i him. tehnologiya. 2024. T. 67, № 6. S. 80-87. DOI:https://doi.org/10.6060/ivkkt.20246706.7056.
23. Nikitin K.S., Polenov Yu.V., Egorova E.V. Razlozhenie dioksida tiomocheviny v aerobnyh i anaerobnyh usloviyah v vodno-schelochnom rastvore // Zhurn. fiz. himii. 2020. T. 94, № 10. S. 1505-1509. DOI:https://doi.org/10.31857/S0044453720100209.